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1 Project Charter

1.1 Mandate

Group WR2A is mandated to develop a rugged device which uses a biomimetic inspired

locomotion system to remove waste from waterfronts. It must be self-reliant and be resistant

to exterior environments such as areas with minimal accessibility, rough weather and arduous

terrain.

1.2 Requirements

The design is to be solar powered and have a biomimetic inspired locomotion system. It

must operate in rain, water, high heat, and navigate terrain such as sand, mud, plants and

bramble. Human intervention should only be necessary to empty the litter container. It

should resist vandalism. The litter collector size will vary from 1 to 5000 cm3 and 1 to 5 kg.

1.3 Constraints

The device should not have any continuously rotating joints. Additionally, bellows must be

used to waterproof joints instead of o-rings to avoid corrosion damage from salt water.

1.4 Criteria

Power consumption per kilogram (device and litter) should be minimized. The operating

time should be maximized for better litter collection efficiency. The robot’s capacity to

navigate a variety of environments, including sand and pebble beaches, shallow water, mud

and around small plants, should be maximized. The mechanical stability of the robot should

be optimized as well to allow navigation of rough terrain. Finally, aesthetics should be

considered as it will operate in public spaces.

1.5 Parametrization Outline

Input parameters that modify the design include the maximum litter weight, litter dimen-

sions as per Group WR2B, desired obstacle size the robot can climb along its forward and

upwards axes, and number of days the robot can operate without recharging.

1



Figure 1: Side view of leg assembly in extended position

2 Detailed Design

The following figures show images of the preliminary CAD model for the legs. Note that

some small features may be missing, and some were added on the pictures for clarity. There

are also a few interfering parts that will need to be adjusted. Figure 1 shows the leg in an

extended position, which is taken as the worse case scenario for the torques applied on the

legs.

Figure 2 shows a side section view of the leg, with the bellow. Each leg now only has one

bellow as the space between the two joints (knee and hip) is too small to accommodate two

separate bellows. The side of the bellow with the largest diameter is going to be attached

to the chassis. The smaller diameter side is attached to a circular part into which the tibia

tube is press fit.

Figure 3 gives a view of the assembly of the leg with the motors and harmonic drives.

It also shows the torsion springs that were added to provide backdriving torque for when

the robot is not moving. Note that the torsion springs on the hip control shaft should be

holding on to the hip bracket as well as the hip plate. Their configuration will be changed

to allow for that. Circular plates (spring supports) were added on each side of the pulley

on the knee control shaft to allow for the attachment of the torsion springs. Figure 4 gives

another view of the assembly.

2



Figure 2: Side section of leg assembly with bellow

Figure 3: Top view of leg assembly

3



Figure 4: Front View of leg assembly

As seen in the previous figures, the thigh member no longer consists of a tube. Instead,

the machined hip and knee plates were joined and now consist of the thigh. Pins in between

the two plates were added for alignment and sturdiness. A cross-section of a pin is shown in

Figure 5.

An updated version of the foot assembly is shown in Figure 6. The solid tube is going

to be threaded to allow the compression cap to screw onto the silicone sock (the thread is

drawn over the picture for now as it is not yet implemented in the CAD).

Cross-sections of all three shafts along their axis are shown in Figures 7, 8 and 9. Note

that spacers and keys were added over the pictures as those features have not yet been

implemented in CAD. Fasteners have not been included yet. For the knee shaft, there

should be no clearance between the pulley and the tibia connection, and they are to be

connected with fasteners. Note also that the torsion springs on the knee control shaft have

some interference with neighbouring parts, which will be fixed.

The timing belt’s tensioner has been drawn in two possible configurations. The first

scenario presented on Figure 10 is when the slack side of the belt is the top which occurs

when the knee is holding the robots weight or when the tibia is moving downward. The

other scenario illustrated on Figure 11 represents what would happen if the belt were to

overtighten and cancel the effects of the torsion spring.
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Figure 5: Hip plate alignment pin section

Figure 6: Foot assembly
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Figure 7: Exterior knee shaft section

Figure 8: Knee control shaft section
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Figure 9: Hip control shaft section

Figure 10: Isometric view of belt and pulleys with a tensioner on the belt’s slack side
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Figure 11: Isometric view of belt and pulleys with a tensioner on the belt’s tight side

3 System Modelling

Table 1 contains assumptions and approximations about the working conditions and applied

loads.

Table 1: Assumptions Made During Robot Modelling

Assumption Type Assumption

Maximum slope angle 20◦

Maximum wind speed 73 km/h (Ottawa, September 2018 Tornadoes)

Linkage composition Homogeneous rigid bodies

Terrain Sand, pebble, shallow water (under chassis), mud, small plants

Environment Salt, dust, high heat, humidity

The maximum slope angle was found as the largest angle for which the robot is still

stable.
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Figure 12: Slope Worst Case Scenarios: Around X (Left) and Around Y (Right)

3.1 External Forces

The defining forces are external forces applied at various locations on the limbs of the robots,

mainly normal forces and friction forces which are applied at the extremities of the limbs.

Different environmental scenarios encountered by the robot have an impact on the magnitude

and direction of these external forces.

The robot must resist two types of soil slope, one around the x axis and the other around

the y axis as shown in Figure 12.

The robot will have three legs touching the ground at all times in two different possible

leg configuration: ACD and BDE, these were determined by the stability analysis found in

section 4. The worst case scenario were assumed for both slope scenarios and shown in Figure

12. For a slope around the x axis, the worst case combination is ACD. For a slope around y

axis, both leg combinations are worst case scenarios as long as only one leg is situated at the

lower end of the slope. By analysing both scenarios, the following assumptions were made

for easier calculations.

Assumptions for slope around x axis.

1. Friction force only acts on the two lowest legs

2. No slipping

Assumptions for slope around y axis.

1. Friction force only acts on the lowest leg

2. No slipping
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A visual analysis of both scenarios demonstrates that the friction force will have negligible

to beneficial impact on the torque of the motors. For a slope around x axis, the friction will

affect the shaft and bearing calculations. For the slope around the y axis, the friction force

will counter the torque created by the normal force thus being beneficial to the motor. As

discussed later in Section 4.4 the robot is now equipped with springs to reduce the torque

when static. Due to the spring, the friction force will now have a negative impact on

the motor. However, this impact will mostly impact the energy required for the robot to

standstill.

3.1.1 Normal Forces

The 2 combinations of feet touching the ground are: 1. A, C, D and 2. B, D, E. To simplify

calculations and algebra, a matrix system approach was used.

For combination 1., the sum of forces and moments are given by

∑
Fz = 0 = NA +NC +ND − FmgT (1)∑

MAx = 0 = NCrcay +NDrday − FmgT rgay (2)∑
MCy = 0 = −NAracx −NDrdcx + FmgT rgcx (3)

For combination 2., the sum of forces and moments are given by

∑
Fz = 0 = NB +ND +NE − FmgT (4)∑

MBx = 0 = −NDrdby −NEreby + FmgT rgby (5)∑
MEy = 0 = −NBrbex −NDrdex + FmgT rgex (6)

where the r values represent the distance between the foot and the reference point,

perpendicular to the rotation axis. To calculate the distance between two points, cartesian

coordinates were used, these can be found in Appendix B.1.

The following is an example with combination 1. A matrix solver is used to find reaction
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Figure 13: Normal Force for all slope angles around y-axis

values.


NA

NC

ND

 =


1 1 1

0 rcay rday

racx rdcx 0


−1 

FmgT

FmgT rgay

FmgT rgcx



=


1 1 1

0 600mm 200mm

1137mm 0 0


−1 

302N

60443Nmm

180118Nmm

 =


158N

79N

64N


(7)

The equations are modified to include a slope factor as shown in Equation 8, the normal

forces are found when the robot is subject to a slope. Figure 13 shows the normal force for

every leg of a combination when subjected to a slope around the y-axis.


NA

NC

ND

 =


1 1 1

0 rcay rday

racx rdcx 0


−1 

FmgT cosSlope

FmgT rgay cosSlope

FmgT (rgcx cosSlope− rgcz sinSlope)

 (8)

3.1.2 Friction Force - Slope around X axis

For this type of slope, the lowest leg on each side of the robot will be subject to friction,

for combination of leg ACD, Leg A and Leg D will be subject to friction. The slope of 20

degrees was determined and explained in Section 3.3.
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∑
MAz = 0 = −FDrD→A + Fmgt sin βrCG→A

→ FD =
Fmgt sin βrCG→A

rD→A
=

(299.99N) sin (20deg)(1136mm− 596mm)

(1136mm− 0mm)
= 48.6N

(9)

∑
Fy = 0 = FA + FD − Fmgt sin β

→ FA = Fmgt sin β − FD = (299.99N) sin (20deg)− (48.6N) = 54.01N
(10)

3.1.3 Friction Force - Slope around y axis

Due to the assumptions for a slope around y axis, the friction force FA (for the case of the

leg combination ACD) is the totality of the force transfered as shown in Equation 11. The

slope of 20 degrees was determined and explained in Section 3.3.

FA = FmgT sinα = (299.99N) sin 20 = 102.6N (11)

3.2 Dynamic Equation

For both the static and dynamic case where the legs are moving, the joint torques are found

by developing an inertial matrix, force and gravity matrices, and combining them in the

dynamic equation developed in the Robotics course, MCG4134 [1]. The final form, following

derivations presented in the Modelling Report, is given by Equation 12

[
(m1 +m2)L

2 m2`L cos(θ − φ)

m2`L cos(θ − φ) m2`

][
θ̈

φ̈

]
− g

[
(m1 +m2)L cos θ +m2` cos θ

m2` cosφ

]

+N

[
L cos θ + ` cosφ

` cosφ

]
− f

[
L sin θ + ` sinφ

` sinφ

]
=

[
τ1

τ2

] (12)

where m1 and m2 are the masses of the linkages and joints (moved to the most distal

point of the linkage), N is the normal force at the foot, f is the friction force at the foot (and

encompasses wind, chassis acceleration, and other external forces parallel the ground), and τ1

and τ2 are the joint torques at the hip and knee respectively. This approach is conservative,

as the actual inertial matrix would contain mass values closer to the center of the linkages.

As the foot location moves throughout a leg cycle, the torque for both knee and hip motors

also fluctuate as shown in Figure 14, where the the torque is plotted over the foot’s distance

from the hip motor. The torque was calculated using the dynamic equation. Torsion springs
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Figure 14: Torque over the foot’s distance from the hip motor.

Figure 15: Torque at hip joint before and after adding torsion spring

were added later to the robot to reduce the power consumption when in an idle position;

the torques before and after adding torsion springs are found in Figures 15 and 16. It can

be seen that, during the last third of the cycle, the leg is on the ground and pulling the

robot forward; with the torsion springs, the torque is below the backdriving torque of the

Harmonic Drives, and so the motors should not consume any power.

3.3 Stability

To determine the maximum terrain operating slope, the centre of mass was determined for

all three directions, x, y, and z. By connecting the feet for each combination of legs touching
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Figure 16: Torque at knee joint before and after adding torsion spring

the ground simultaneously, stability triangles are created and then used to visually determine

an area of stability for both leg combination. The triangle of stability for combination ACD

and BDE, the area of stability and the optimal location for the centre of mass is shown in

Figure 17. For the robot to stay stable during all phases of the walking cycle, the centre of

mass must remain in the area of stability. When the robot is subjected to a terrain slope,

the different height of the centre of mass (in z direction) will cause the centre of mass to

”move” closer to the edges of the area of stability. By using rotational matrices previously

presented in the modelling report, the maximum slopes were determined. It was determined

that an angle of 20 degrees and -20 degrees around the x and y axis will enable the robot to

move properly in one or both slopes.

3.4 Linkage Optimization

In order to determine the relative lengths of the leg linkages, as well as the bend angle in

the lower member/tibia, a simple simulation was performed. First, the range of θ is between

0◦ and 45◦ with the body reference frame, shown in Figure 18. Then, the range of ψ is

between −22.5◦ and 22.5◦ relative to the thigh linkage (this ensures half of the 45◦ range

above or below the thigh). These values were chosen while considering the limited range of

bellows and optimal stability. The length of r1 is 100mm, and combined length of r2 and

r3 is 350mm. The relative ratio of r1 to r2 + r3 was determined through trial and error

(and would have required more sophisticated methods to determine than the one presented

below).

Ranges of r2 and α are generated, and all permutations are run through the following
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Figure 17: Stability Visualization

Figure 18: Linkage Optimization lengths and angles
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Figure 19: Visualization of leg going through leg lifting and putting down motion, as well

as ground height d

steps:

1. Begin with θ = 45◦ and ψ = −22.5◦; this position gives the ”ground contact height”

(d) shown in Figure 19, as well as the closest the foot can get to the body (xmin)

2. Increase to ψ = 22.5◦. This position gives the highest the leg can reach (ymax)

3. Decrease θ until the ground is reached, giving xmax

The results were then plotted in 3D, shown in Figure 20, and a configuration that gave

equal xrange = xmax − xmin and yrange = ymax − ymin was determined visually. This method

does not necessarily give the most optimal solution, as there is no guarantee that the furthest

position the leg can reach in x is with ψ = 22.5◦ (once α reaches a certain angle, φ must

be lowered to touch the ground, even with θ = 0). As shown in Figure 19, the foot can

technically reach further in x than the found value, just at a different height y. Additionally,

setting different maximum and minimum angles for ψ may have also provided better results.

The configuration giving a ”square workspace” was r2 = 50mm, r3 = 300mm and α = 69◦,

giving xrange = 103mm, yrange = 103mm, and the height of the hip joint from the ground

d = 190mm. The length r2 was then found to be too small for mounting the bellow; it was

doubled to 100mm, with the ranges changing to xrange = 97.60mm and yrange = 147.51mm.

During parametrization, the maximum reach in x and y will be decided by the user; the

values of r1, r2, r3 and α will scale relative the the maximum desired reach.
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Figure 20: 3D plots of range in x, y and height from ground d as functions of tibia angle α

and linkage lengths r2 and r3

3.5 Power Consumption

3.5.1 Harmonic Drives Efficiency

The Harmonic Drive and motor at the hip for the heaviest and largest robot were selected

to demonstrate the following equations. The example uses the average output speed and

half of peak torque seen by the drive. Specifications will appear as used. Harmonic Drive

efficiency depends on the input rotation speed and ratio of output torque to rated torque

[2]. The speed efficiency ηr was extracted from Harmonic Drive’s website using Engauge

Digitizer and is approximated using MATLAB’s curve fit tool.

ηr = 4.848× 10−9(rpmmotor)
2 − 5.879× 10−5(rpmmotor) + 0.8367

= 4.848× 10−9(237.77rpm)2 − 5.879× 10−5(237.77rpm) + 0.8367 = 0.823
(13)

where rpmmotor is the output speed of the motor in rotations per minute (RPM). Har-

monic Drive only gives values of 0.69 < etar < 0.81, so the result will be limited to this

range (ηr = 0.81). The torque efficiency depends on

α =
load torque

rated torque
=

18.61Nm

37.23Nm
= 0.5 (14)

17



where the rated torque is the L10 rated torque provided by Harmonic Drive. The torque

efficiency is found in the same was as the speed efficiency and approximated as

ke = −1.481α4 + 4.312α3 − 5.013α2 + 3.159α− 0.02076

= −1.481(0.5)4 + 4.312(0.5)3 − 5.013(0.5)2 + 3.159(0.5)− 0.02076 = 0.75
(15)

Finally, the overall efficiency of the Harmonic Drive is given by

ηHD = ηrke = (0.823)(0.75) = 0.61 (16)

The input torque to the Harmonic Drive (and thus output by the motor) is given by

Tm =
THD
ηHDe

=
18.61Nm

(0.61)(100)
= 305.63mNm = 305.63Nmm (17)

where e is the gear ratio of the Harmonic Drive (chosen for our project to be 100).

3.5.2 Motor Power Consumption

Maxon Motor provides equations relating the power in and out of the motor, and power

losses [3]. Rearranging these equations provides us with the voltage of the motor

U =
1

ks

(
30000RmTm

πk2T
+ ωm

)
=

1

81.31 rpm
V

(
30000(2.96Ω)(305.63Nmm)

π(117.43Nmm
A

)2
+ (237.77rpm)

)
= 10.6210.62V

(18)

where ks
[
RPM
V

]
is the speed constant, kT

[
mNm
A

]
is the torque constant, Rm[Ω] is the

motor resistance and ωm = ωHDe[RPM ] is the output speed of the motor. The motor current

can be solved for using the quadratic equation with a = Rm = 2.91Ω, b = −U = −10.62V

and c = πωmTm
30000

= π(237.77rpm)(305.63Nmm)
30000

= 7.61. If the motor speed is 0, then the lower result

gives 0 and the larger result should be taken. Otherwise, the smaller result should be taken

(for a motor running near nominal conditions, the lower result of the quadratic equation will

give very close to the nominal current whereas the upper value will give an answer an order

of magnitude higher). For the given instance, I = 0.9876A.
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3.5.3 Robot Power Consumption

An inaccurate method of calculating robot power consumption is to sum the nominal current

of all motors (and electronics), and treat the total current as being continuously drawn. As

our design allows for springs and Harmonic Drives to take the robot’s weight during rest,

as well as the robot gait only moving one leg forward at a time, a more accurate method

is required to allow significant battery size and robot weight reductions. A simulation was

written that splits the gait into 3 phases. The steps for a front leg are:

1. The leg starts fully retracted (θ = 45◦ and φ = −22.5◦). Phi moves from its bottom

position to its top position (φ = 22.5◦).

2. The leg lowers by reducing θ until the foot makes contact with the ground (a position

determined in 3.4)

3. The leg pulls the body forward until reaching the position from the beginning of phase

1

The steps for a rear leg are the opposite. While one leg is performing steps 1 and 2, the

other 4 legs remain stationary, and while close to the body the legs consume no power. The

simulation ran over each phase for each leg and summed the coulombs expended at each

step based on the output speed and torque, joint angles, and Harmonic Drive and motor

calculations presented in Subsections 3.5.1 and 3.5.2. The total number of coulombs was

summed and divided by the simulation time to give the average amperage during walking.

The code can be found in Appendix D.1. For the heaviest and largest predicted robot,

with a body mass of 30kg and leg geometry taken from 20, consumes on average 5.4A. The

other electronics (Raspberry Pi, NVIDIA Jetson, drivers, sensors, etc.) collectively consume

2.13A, giving a total system power draw of 7.55A. Since the batteries output at 48V for the

motors, the total power consumption is

P = (7.55A)(48V ) = 362.4W (19)

3.5.4 Solar Power

A typical day in Ottawa during the summer will emit solar radiation similar to Figure 21.

As solar radiation emission will vary greatly with weather, two days were taken into account,
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Figure 21: Hourly Solar Radiation Emission - Ottawa July 1st 2019 [4]

July 1st 2019 as shown in Figure 21 and July 17th 2019. The mean KJ/m2 for both days

was taken to calculate a more realistic solar radiation average. The average was calculated

as 2111.273KJ/hm2.

The total watts produced is calculated using the equation below and where S is the

radiation emission in KJ/hm2, µ is the solar panels efficiency [5] and A the area of solar

panels on the robot.

Wabsorbed =
SµA

(3600s/h)
=

(2111.273 KJ
hm2 )(0.223)(0.5m2)

(3600s/h)
= 65.39W (20)

As a constraint, the robot’s batteries must be completely recharged by the end of the

day. Thus, the total amount of energy consumed by the robot during the day must be

compensated by the solar energy absorbed. The robot requires 355 Watts of power, and

according to the calculations above will absorb 65 Watts. Using the equation below, the

total run time capability of the robot is calculated by:

R =
WabsorbedH

Wconsumed

=
(65.39W )(10h)

(362.4W )
= 1.80h (21)

where R is the total runtime in hours, H the number of hours of sun during the day. The

robot can only accomplish throughout the day 1.8 hours of work time if it is to only use the

energy it can absorb.

3.5.5 Battery

Cells are arranged into a battery and managed by a Battery Management System [6]. All

electronics are powered from this with the necessary voltage regulators. The battery voltage
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is defined as the highest voltage of any component, Vmax, which is the motors running at 48

V. The number of battery cells running in series, Nseries, is defined as

Nseries =
Vmax
Vcell

=
Vmax
3.6V

=
48V

3.6V
= 14 cells (22)

The number of cells in parallel, Nparallel, to achieve the desired run time is defined as

Nparallel =
T · I
Q

=
(1.8h)(7.55A)

3.4Ah
= 4 cells (23)

where T is the runtime in hours, I is the total current draw of the robot and Q is the

Amp-hour rating of an individual battery cell [7]. The total number of required cells is the

number of series cells multiplied by the number of parallel cells.

N = Nparallel ·Nseries = 4× 14 = 56 (24)

3.5.6 Results of Power Consumption Simulation

Using the code given in Appendix D.1, the average current draw is found to be 7.53A. This

results in four cells in parallel for 1.8 hours of battery life and 14 cells in series to match

the 48V of the motor, giving a total of 56 cells. At 50g each, the combined weight of the

cells is 2.8kg, far down from the approximately 238 cells needed when constantly running at

nominal current (or 11.9kg) [8]. The more accurate method of calculating power consumption

in Section 3.5.3 reduces the battery mass by two thirds over the naive approach.
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4 Analysis

4.1 Analysis Outline

All analyzed components are found in chronological order below.

1. Limbs

2. Belt, tensioner and pulleys

3. Torsion springs

4. Shafts

5. Keys

6. Bearings and spacers

7. Fasteners

8. Bellows

9. Hip Brackets

4.2 Limbs

The robot is composed of five legs, all of which are identical in size and length. For this

reason, only one leg is analyzed when subject to worst case scenario forces. However, as the

robot configuration is not symmetrical for the frontal legs and rear legs, some legs will never

be submitted to worst case scenario forces.

4.2.1 Inputs and Outputs

The inputs are the links length determined by optimal link length analysis, the size of internal

component such as the pulley at the knee, and the normal and friction force found at the

foot. This analysis does not output any parameters to other components analysis. This

analysis ensures a reasonable safety factor and determines the diameter and thickness of the

tibia, where possible.

22



4.2.2 Constants and Parameters

The lengths, angle and sizes of the limbs must be known to calculate the bending and shearing

in the limbs. They are predetermined by optimal limb length analysis which establishes the

legs reach and height. Some limitations exist such as the size of the pulley which restricts

the minimal size of the thigh member. The normal force and friction force are found using

external force analysis. For this analysis, the worst case scenario of both frictional forces and

normal forces are used. The circular tube thickness is set constant at 1.6 mm due to industry

standards. The targeted safety factor for this section is 2.0 due to unknown external forces

such as human interactions, obstacles, drops, etc.

4.2.3 Assumptions and Simplifications

Limb weight were assumed as they cannot be calculated until the size the limbs are deter-

mined by this analysis which creates an iterative process. The weight of the foot is included

in the weight of member 3 (m3) and the weight of the knee is included in the weight of

member 2 (m2) as shown in Figure 22. The weights have been assumed to be in the centre

of the member whereas the weight should technically be distributed over the whole member.

In between point B and C, the member is press fitted to a mounting piece, no calculation

on the press fit was performed as it was assumed a non critical failure location due to only

compression forces and relatively small bending forces.

4.2.4 Material Selection

The material selected for the application of the limb is marine grade aluminum 6061-T6 for

its outdoor resistance, high yield strength of about 276 MPa and low mass [9].

4.2.5 Free-Body Diagram

First, the FBD of the leg is used to determine external forces on the members. This is shown

in Figure 22. External forces are the frictional forces Ff and reactive forces perpendicular

to the ground FN . A friction force at the foot in the y direction is not shown in the FBD

but included in the calculation.

To properly analyse all members/links of the leg, the leg must be decomposed into its

various sections. The leg is decomposed into three sections, AB which is the foot and lower

tibia, BC is the higher tibia, and CD is the thigh. The decomposition enables to calculate

23



Figure 22: Force-Body Diagram of one leg

internal forces at the joint of all members as shown in Figure 23 where r3, r2, r1 are length

of the member, Bm, Cm, and Dm are moments at the joints and all other arrow are forces.

4.2.6 Stress Analysis

To calculate the stress in the members, first the axial, radial and bending forces must be

determined. Using the sum of forces and moments about an axis, the joint forces Bx,y, Cx,y

and Dx,y, and moments BM , CM , DM can be determined as follows.

∑
FxAB

= 0 = Ff −Bx → Bx = Ff = 10.6N (25)

∑
FyAB

= 0 = FN −m3g −By →

By = FN −m3g = 160N − (0.532kg)(9.81m/s2) = 154.8N
(26)

∑
FxBC

= 0 = Bx − Cx → Cx = Bx = 10.6N (27)

∑
FyBC

= 0 = By −m2g − Cy →

Cy = By −m2g = 154.8N − (0.836kg)(9.81m/s2) = 146.6N
(28)
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Figure 23: Force-Body Diagram for inner forces

∑
FxCD

= 0 = Cx −Dx → Dx = Cx = 10.6N (29)

∑
FyCD

= 0 = Cy −m1g −Dy →

Dy = Cy −m1g = 146.6N − (0.532kg)(9.81m/s2) = 141.4N
(30)

∑
MB = 0 = −FNr3 sin θ + Ffr3 cos θ +m3g

r3
2

cos θ +BM →

BM = FNr3 sin θ − Ffr3 cos θ −m3g
r3
2

cos θ

BM = (160N)(300mm) sin (71.3deg)− (10.6N)(300mm) cos (71.3deg)−

(0.532kg)(9.81m/s2)
(300mm)

2
cos (71.3deg)

BM = 12153.4Nmm

(31)
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∑
MC = 0 = −Bxr2 sinφ−Byr2 cosφ+m2g

r2
2

cosφ−BM + CM →

CM = Bxr2 sinφ+Byr2 cosφ−m2g
r2
2

cosφ+BM

CM = (10.6N)(100mm) sin (39.8deg) + (154.8N)(100mm) cos (39.8deg)−

(0.836kg)(9.81m/s2)
(100mm)

2
cos (39.8deg) + 12153.4Nmm

CM = 24418.6Nmm

(32)

∑
MD = 0 = −Cxr1 sinα− Cyr1 cosα +m1g

r1
2

cosα− CM +DM →

DM = Cxr1 sinα + Cyr1 cosα−m1g
r1
2

cosα + CM

DM = (10.6N)(100mm) sin (17.6deg) + (146.6N)(100mm) cos (17.6deg)−

(0.5kg)(9.81m/s2)
(100mm)

2
cos (17.6deg) + 24418.6Nmm

DM = 38479.1

(33)

Using the internal forces convention, the axial, shear and bending forces at every point

on a member/link is found using the following equations and shown in Figure 24.

Section AB:

Axial : − Ff cos θ − FN sin θ Axial : − Ff cos θ − FN sin θ +m3g sin θ (34)

Radial : − Ff sin θ + FN cos θ Radial : − Ff sin θ + FN cos θ −m3g cos θ (35)

Section BC:

Axial : −Bx cosφ+By sinφ Axial : −Bx cosφ+By sinφ−m2g cosφ (36)

Radial : Bx sinφ+By cosφ Radial : Bx sinφ+By cosφ−m2g sinφ (37)

Section CD:

Axial : − Cx cosα + Cy sinα Axial : − Cx cosα + Cy sinα−m1g cosα (38)

Radial : Cx sinα + Cy cosα Radial : Cx sinα + Cy cosα−m1g sinα (39)

As there are bending and shearing in multiple planes, the resultants of both are calculated

as shown in equation 40 and 41. The numerical values are for point C which is located at

100mm in the stress diagrams shown in Figure 24. For other members, see Appendix B.3.

V =
√
V 2
x + V 2

y =
√

(119.5N)2 + (54.0N)2 = 131.1N (40)

M =
√
M2

x +M2
y =

√
(12153.4Nmm)2 + (16204.5Nmm)2 = 20255.6Nmm (41)
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Figure 24: Axial Force Diagram

The bending can be obtained by multiplying the radial force to the distance such as

Bending = Radial×Distance and can then be matched to joint values such as BM , CM , and

DM to confirm the calculations. The bending and shear diagrams demonstrate that between

both hollow circular member AB and BC, point C will have the highest stress concentration.

First the axial stress is calculate using the following equation [10]:

σx =
Px
A

+
My

I
=

Px
π
4
(D2 − d2)

+
My

π
64

(D4 − d4)

=
85N

π
4
((17.175mm)2 − (14mm)2)

+
(32605Nmm)(7.175mm

2
)

π
64

((17.175mm)4 − (14mm)4)
= 118.5MPa

(42)

The shearing stress due to radial forces in the member are calculated as shown in Equation

43, and the shearing forces created by the torsion due to frictional forces in the y direction

(when on a slope) is shown in Equation 44.

τshearxy =
2V

A
=

2(131.1N)
π
4
((17.175mm)2 − (14mm)2)

= 3.37MPa (43)

τtorsion =
T

2r2t
=

(15128Nmm)

2(1.59mm)(7.79mm)2
= 24.9MPa (44)

τxy = τshearxy + τtorsion = 3.4MPa+ 24.9MPA = 28.3MPa (45)
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The safety factor n of the limb to external forces is calculated by comparing the Von

Mises equivalent stress σe and yield strength Sy of the material.

σe = (σ2
x + 3τ 2xy)

(1/2) = ((118.5MPa)2 + 3(28.3MPa)2)(1/2) = 128.2MPa (46)

n =
Sy
σe

=
250MPa

128.2MPa
= 2.0 (47)

Another critical location on the member is the curved section of the beam which is at

point B. As the member is considered a curved beam, different set of equations are used.

Equations for hollow circular cross sections for curved beams could not be found nor derived,

thus the stress in the beam was approximated using a full tube cross section and a suggested

approximation formula. The radius of the curvature, or the radius of inner fiber ri was set at

8.59 mm, half of the diameter of the bar which is possible in the industry but will mostlikely

require advanced tooling [11]. The radius of centroidal axis rc, radius of neutral axis rn and

the distance from centroidal axis to neutral axis e are calculated as follow for a full circular

tube where R is the radius of the tube.

rc = ri +R = 8.59mm+ 8.59mm = 17.175mm (48)

rn =
R2

2(rc −
√
r2c −R2)

=
(8.59mm)2

2(17.175mm−
√

(17.18mm)2 − (8.59mm)2)
= 16.02mm (49)

e = rc − rn = 17.18mm− 16.02mm = 1.51mm (50)

The stress in the curvature is calculated at the inner fiber radius σi, due to its higher

tension forces than at the outer fiber. Where A is the area for the cross section of a hollow

tube and not of a full tube.

σi =
Mci
Aeri

=
(20256Nmm)(7.437mm)

π
4
((17.175mm)2 − (14mm)2)(1.505mm)(8.59mm)

= 196.1MPa (51)

The stress at the inner fiber of the tube is thus 196.13 MPa compared to the 72.92 MPa

previously calculated at point B using straight beam formulas. The safety factor for the

point B is 1.27 when subject to 196.1 MPa, however multiple assumptions were made such

that the tube was hollow. If the area of a full tube is used in the above equation, a safety

factor of 3.7 is achieved and if the simplification method is used a safety factor of 2.2 is

achieved, see appendix B.2. Due to the approximations, the low safety factor is acceptable

in this case and the parametrization will ensure the safety factor at Point C is respected at

2.0.
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4.2.7 Critical Review

Multiple assumptions such as the weight of the limbs and weight location were made to

simplify the calculations. The stresses at the curved locations must be calculated using

more advanced tools to properly determine a safety factor. Fatigue was not considered in

this analysis due to the slow speed of the robot. Calculation of the weight of a member such

as the lower tibia demonstrate a weight of 0.06 kg, one tenth of the approximated weight

of the tibia of 0.5 kg with negligible impact on the overall bending and shear stress of the

member.

4.2.8 Parameterization

Due to exterior conditions, loads and application, marine grade metals are best used for the

limbs of the robot. This material will not be parameterized and will remain constant for

various sizes of robots. Due to the limitation posed by the pulley found at the knee, the

thigh member’s size is restricted by the belt and pulley size, and height requirements, thus

the thigh size are determined by the section 4.3, these sizes will produce very high safety

factors. The length of members are also determined by external analysis. The diameter and

thickness of the tibia hollow tube are parametrizable, however both are dependent of the

other. To attain reasonable safety factors between 1 and 2.5, the thickness will be constant

to ensure the thickness does reduces to unreasonable size. However, it is also possible that

the diameter reduces to unfeasible sizes, thus diameter will be assumed constant for these

situations. The bend radius of the curved section is another paramatrizable factor which

helps reduce internal stresses. The bend radius of the curved section is set at half of the

diameter of the tube, however it was found that there is limited space on the upper tibia

link causing obstruction issues between the bellow mounting piece and the tibia link, and

an appropriate length size issue for the press fit of the tibia. Thus, the bend radius will be

set at half of the diameter when possible, but may require to be reduced furthermore due to

obstructions.

4.3 Belt, Tensioner and Pulleys

4.3.1 Inputs and Outputs

The main input for the belt design is the maximum moment generated at the knee joint

Mmax = Mknee = 30.71 Nm obtained from Figure 14 in Section 3.3. Other inputs are the

length of the thigh limb (from knee shaft to hip shaft) Lthigh = 100 mm and the distance
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between the hip motor shaft and the knee motor shaft Lhm2km = 88 mm which form the

center distance C.

C = Lthigh + Lhm2km = 100 mm + 88 mm = 188 mm (52)

The outputs are the belt’s tight tension Ttight and slack tension Tslack, the pulleys’ pitch

diameter Dpitch, outer overall diameter DO including the belt, number of teeth Npulley teeth,

the belt’s length Lbelt and number of teeth Nbelt teeth along with other dimensions for the

CAD model.

4.3.2 Constants and Parameters

The mechanical efficiency of the belt is known to be somewhere between 94% and 96% [12].

A value of ηbelt = 0.95 was chosen for this application. The chosen belt has a constant tooth

pitch p of 8 mm per tooth and a width w of 25 mm. The pulleys’ number of teeth nteeth is

a variable parameter that will change based on the maximum torque at the knee joint, but

the value chosen for the calculations is 21 teeth for both pulleys. The pitch diameter of the

pulley can be calculated as follows [12]:

Dp =
p nteeth
π

=
(8 mm/tooth) (21 teeth)

π
= 53.48 mm (53)

4.3.3 Assumptions and Simplifications

It is assumed that both pulleys have the same diameter (Dhip = Dknee = 53.48 mm) since no

further speed reduction is required. This also simplifies the design calculations. The impact

of gravity and inertia of both pulleys and the belt were neglected due to the low velocity

and acceleration of the limbs.

4.3.4 Material Selection

The chosen timing belt manufacturer, Gates Mectrol, offers urethane belts reinforced with

either steel or Kevlar. Both products offered different limits when it comes to the maximum

tension that can be applied on a belt. However, since the steel reinforced belts are able to

take higher loads than the Kevlar ones, steel was chosen to minimize the size of both the

belt and the pulleys [13]. The chosen belt, a steel reinforced HTD®8 urethane timing belt

has a maximum allowable belt tension Tmax of 3471 N/25 mm of belt width as shown in the

Gates Mectrol Urethane Belt Catalogue on page 9 in Appendix C [13]. The manufacturer
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Figure 25: Knee pulley FBD

also suggests an allowable effective tension Te allow of 1870 N/25 mm of belt width that is

valid only if 15 teeth or more are used for meshing. This condition means that the allowable

effective tension value given only applies if the the two pulleys have at least 30 teeth and

therefore cannot be used for this present case.

As for the pulleys, Gates Mectrol offers aluminium, steel, and stainless steel as options

for the pulley material [13]. Zinc plated steel or stainless steel flanges may also be added to

the pulley to help maintain the position of the belt. The chosen material is aluminium since

both pulleys are sealed from the environment, and because a reduced weight has a positive

effect on the robot’s general capabilities.

4.3.5 Free-Body Diagram

The free-body diagrams of both pulleys are presented in Figure 25 and Figure 26.

4.3.6 Stress Analysis

The moment taken by the driving pulley is expressed as follows [12].

Mhip =
Mknee

ηbelt

Dhip

Dknee

=

(
30.71 Nm

0.95

)(
53.48 mm

53.48 mm

)
= 32.26 Nm (54)

Then, the effective tension of the belt Te can be obtained from the driving torque.

Te =
2Mhip

Dhip

=
2(32.36 Nm)

53.48 mm 1 m
1000 mm

= 1209 N (55)
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Figure 26: Hip pulley FBD

The effective tension of the belt can also be expressed by the difference between the tight

tension and the slack tension and timing belts are known to perform better when the slack

tension is 10% to 30% the magnitude of the effective tension [12]. 30% was chosen as a

conservative approach for increasing the load on the belt.

Tslack = 0.3 Te = (0.3) 1209 N = 362.7 N (56)

Then, the tight tension can be obtained as follows.

Ttight = Te + Tslack = 1209 N + 362.7 N = 1571.7 N (57)

The tight and slack tensions can be added to obtain the resultant reactive force on either

shaft. ∑
Fx = 0 −→ R = Ttight + Tslack = 1571.7 N + 362.7 N = 1934.4 N (58)

Now, to compare the belt tensions with the manufacturer’s recommendations to obtain

safety factors.

SF =
Tmax
Ttight

=
3741 N

1571.7 N
= 2.38 (59)

SF ∗ =
Te allow
Te

=
1870 N

1209 N
= 1.55 (60)
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However, SF ∗ may not mean anything since the condition of minimum 15 teeth in meshing

is not respected for two pulleys with 21 teeth each.

The total length of the belt Lbelt and the number of teeth Nteeth can be obtained as follows

[12].

Lbelt = 2C + πDp = 2(188 mm) + π(53.48 mm) = 544 mm (61)

Nteeth =
Lbelt
p

=
544 mm

8 mm/tooth
= 68 teeth (62)

4.3.7 Critical Review

The pulley dimensions obtained above are sufficient to reduce the belt tensions to acceptable

values based on the manufacturer’s recommendations. An error may have been made when

the efficiency of the belt was applied: for a case where the motor is not powered, the driver

pulley actually becomes the knee pulley and the motor shaft is then driven. Therefore, the

torque on the motor shaft should be lower than torque on the knee pulley. However, wrong-

fully applying the efficiency of the belt drive only makes this analysis more conservative and

has no negative effects on the results. This error may be corrected for the parameterization.

The analysis of the torsion spring belt tensioner was attempted but did not yield satisfying

results. No direct link could have been made between the belt tension and the properties

of the torsion spring. It was then decided that the belt’s total length Lbelt would tightly

fit the over the pulleys when installed by hand. Then, the installation of the torsion spring

only helps ensuring that the belt tension remains in an operating range if the belt were to

expand due to the temperature or due to normal life wear. The spring dimensions were

chosen following a similar process as the other torsion springs in Section 4.4 but no further

analysis was completed. The main spring dimensions are as follows: free angle β = 270◦,

wire diameter d = 2 mm, coil diameter D = 10 mm, arm length l = 24 mm, number of

body turns Nb = 14.75 turns. The spring constant k was found to be 327.3 Nmm/rad, the

maximum deflection θmax is approximately 155◦ which yields a maximum torque Mmax of

885.44 Nmm while respecting a safety factor of 1.03 if the belt were to perfectly straighten

as shown on Figure 11 in the Detailed Design Section. If a single tensioner is not sufficient

for the continuous operation of the robot, an identical torsion spring could be added on the

other side of the belt to compensate for the bidirectional drive.
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4.3.8 Parameterization

The idea behind the parameterization of this analysis consists of inputting the highest torque

generated at the knee and the distance between the input and output shafts to obtain the

pulley and belt dimensions. A loop will most likely be used to obtain an optimized value

for the pulley diameter based on the tensile limits of the belt and the other belt dimensions

that will remain constant. The tensioner will most likely not be parameterized due to the

constant belt width and belt pitch.

4.4 Torsion Springs

4.4.1 Inputs and Outputs

Each leg’s motor shafts have a pair of torsion springs to compensate for the backdrivability

of the harmonic drives. The idea is to limit the torque to a value beneath the harmonic

drive’s backdrivable torque when it is not powered. The inputs are then the maximum

torque generated at the knee Mknee max = 32.36 MPa and the maximum torque generated

at the hip Mhip max = 47.44 MPa from Figure 14 in Section 3.3. Additionally, the minimum

torques Mknee min = 19.08 Nm and Mhip min = 31.07 Nm are used to ensure that the mini-

mal deflection angles of the torsion springs provide sufficient torques based on the angular

positions of the limbs. The tibia span (θtibia max − θtibia min) approaches 45◦ while the thigh

span (θthigh max − θthigh min) is only about 25◦. Also, the outer diameters of the spacers

(Dknee spacer = 31.5 mm, Dhips spacer = 33.5 mm) are given to ensure that all torsion springs

do not interfere with the shaft spacers when deflected.

The torsion spring analysis will generate many outputs such as the various dimensions

of the springs. However, the most important outputs are the spring constants kknee and khip

that are used to compute the resultant torques taken by both harmonic drives.

4.4.2 Constants and Parameters

The spring free angle β can vary between 90◦ and 360◦, but a value of β = 90◦ was set to

be a constant for the purpose of this analysis. Similarly, the number of full turns made by

the spring coil was chosen to be Nf = 3 turns. The length arms were kept constant for both

springs (l1 knee = l2 knee = 25 mm, l1 hip = l2 hip = 25 mm).

34



4.4.3 Assumptions and Simplifications

It is assumed that the backdriving torque of a harmonic drive corresponds to approximately

1/5 of the harmonic drive’s rated torque based on the data sheets presented in Appendix C.

For this purpose, it is also assumed that the rated torque of the harmonic drive coincides

with the maximum torques Mknee max and Mhip max.

Mknee bd '
Mknee max

5
=

32.36 MPa

5
= 6.47 MPa (63)

Mhip bd '
Mhip max

5
=

47.44 MPa

5
= 9.45 MPa (64)

Two torsion springs equally share the torque in such a way that the maximum and minimum

torque generated by a single torsion spring can be obtained as follows.

Mmax hip spring ≥
1

2
(Mhip max −Mhip bd) =

1

2

4

5
Mhip max =

4

10
(47.44 Nm) = 18.98 Nm (65)

Mmin hip spring ≥
1

2
(Mhip min −Mhip bd) =

1

2
(31.07 Nm− 9.45 MPa) = 10.79 Nm (66)

4.4.4 Material Selection

The chosen material for all springs is music wire due to it being a common spring material

and also due to it’s sufficient tensile strength for this application. The Young’s Modulus

E of music wire, and most carbon steels, was given as 207 GPa. The tensile strength Sut

was obtained with the following constants A and m, and a wire diameter d of 6 mm in the

equation below [10].

Sut =
A

dm
=

2211 MPa mm0.145

(6 mm)0.145
= 1705 MPa (67)

Then, for a music wire, the normal yield strength Sy can be obtained with the following

equation [10].

Sy = 0.78Sut = 0.78(1705 MPa) = 1330 MPa (68)

4.4.5 Free-Body Diagram

The analysis presented below covers the procedure followed to obtain the spring constant of

the two torsion springs mounted on the hip shaft assembly. One of the two torsion spring

is right-handed and the free-body diagram is presented on Figure 27. The other spring is

left-handed and is simply a mirrored version of the right-handed one.
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Figure 27: Hip right-handed torsion spring FBD

4.4.6 Stress Analysis

First, the maximum and minimum torque generated by the spring can be expressed as

follows.

Mmax hip spring ≤ kminθthigh max Mmin hip spring ≤ kminθthigh min (69)

Where kmin is the minimal spring constant necessary to reduce the harmonic drive torque

below its backdrivable torque. Then, subtracting the second equation from the first isolating

kmin produces:

kmin ≥
Mmax hip spring −Mmin hip spring

kθthigh max − kθthigh min

=
18.98 Nm− 10.79 Nm

25◦ π
180◦

= 18.76 Nm (70)

This signifies that the spring should be designed in such a way that kmin ≥ 18.76 Nm. Now,

to obtain the minimum and maximum spring deflections:

θthigh max ≥
Mmax hip spring

kmin
=

18.98 Nm

18.76 Nm
= 1.01 rad

180◦

π
= 57.96◦ (71)

θthigh min ≥
Mmin hip spring

kmin
=

10.79 Nm

18.76 Nm
= 0.58 rad

180◦

π
= 32.96◦ (72)

The next steps consisted of finding the spring specifications that would not only provide a

valid spring constant but also limit the bending stress to the calculated yield stress. This

process was done by trial and error for this report, but it will be part of the parameterization

as explained in the Parameterization section.
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First, based on the free angle β of the spring, a linear function was quickly obtained to

compute the number of partial turns Np.

Np = − 1

360◦
β + 1 = − 90◦

360◦
+ 1 = 0.25 turn (73)

Then, the number of body turns Nb and number of active turns Na can be obtained. Equa-

tions 74 to 85 came from Shigley’s textbook [10].

Nb = Nf +Np = 3 turns + 0.25 turn = 3.25 turns (74)

Na = Nb +
l1 + l2
3πD

= 3.25 turns +
50 mm + 50 mm

3π(65 mm)
= 3.41 turns (75)

The shaft analysis from Section 4.5 required the length occupied by the spring over the shaft.

This length can be approximated as follows by using the wire diameter d as a pitch value,

and by not taking into consideration the length of the arms.

Lspring ' Nad = (3.41 turns)(6 mm/turn) = 20.48 mm (76)

Then, to obtain the spring constant k in torque per radian:

k =
M

θt
=

d4E

64DNa

=
(6 mm)4 207× 103 MPa

64(65 mm)(3.41 turns)
= 18.89× 103 Nmm/rad (77)

The minimal value for kmin can be compared with computed value for k based of the dimen-

sions of the spring.

k = 18.89 Nm/rad > 18.76 Nm/rad = kmin (78)

Now, to verify that the spring’s inner coil diameter does not interfere with the spacer, the

maximum bending moment was obtained with a maximum deflection θmax = 58◦.

Mmax = k(θmax − θ = (18.89× 103 Nmm/rad)(58◦
π

180◦
) = 19.13× 103 Nmm (79)

Then, the angular deflection of the coil body in number of turns θ′c and the final coil diameter

D′ as well as the final inner diameter of the coil D′i can be obtained as follows.

θ′c =
10.8MDNb

d4E
=

10.8(19.13× 103 Nmm)(65 mm)(3.25 turns)

(6 mm)4 207× 103 MPa
= 0.163 turn (80)

D′ =
NbD

Nb + θ′c
=

(3.25 turns)(65 mm)

3.25 turns + 0.163 turn
= 61.90 mm (81)
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D′i = D′ − d = 61.90 mm− 6 mm = 55.90 mm (82)

For this case, the minimum inner coil diameter is well above the spacer diameterDhips spacer =

33.5 mm and therefore, both components should not interfere. The last set of steps consist of

obtaining the safety factor for the spring with the previous dimensions used. First, the stress-

correction factor Ki was obtained before computing the bending stress σ. Here, C is the

spring index which correlates to the ratio D/d for torsion springs. Here, C = 65 mm/6 mm =

10.83 which is acceptable since it is recommended that 4 ≤ C ≤ 12 [10].

Ki =
4C2 − C − 1

4C(C − 1)
=

4(10.83)2 − 10.83− 1

4(10.83)(10.83− 1)
= 1.07 (83)

σ = Ki
32M

πd3
= 1.07

32(19.13× 103 Nmm)

π(6 mm)3
= 968.59 MPa (84)

SF =
Sy
σ

=
1330 MPa

968.59 MPa
= 1.37 (85)

4.4.7 Critical Review

The dimensions of the springs obtained above are reasonable considering that the spring

index C of 10.83 is between the recommended range 4 ≤ C ≤ 12 [10]. Also, for a music

wire, the wire diameter can go up to 6.5 mm according to Shigley’s textbook [10]. However,

trying to find a spring with such dimensions on various manufacturers’ catalogues did not

yield satisfying results.

The other set of torsion springs for the knee drive that were not presented in the stress

analysis above were also computed. Here are the main results: free angle β = 90◦, wire

diameter d = 5 mm, coil diameter D = 40 mm, arm length l = 25 mm, number of body turns

Nb = 3.25 turns. The spring constant k was found to be 14940 Nmm/rad, the maximum

deflection θmax chosen as 88◦ which yields a maximum torque Mmax of 26672.75 Nmm while

respecting a safety factor of 1.16. Now, two graphs comparing the resulting torques that the

harmonic drives have to hold before and after the addition of the spring are presented on

Figure 28

One assumption that deserves to be reviewed is the backdriving torque values for the

harmonic drives. In fact, multiple sources state contradicting statements. Therefore, it may

be safer to limit the harmonic drives’ static torques to values approaching 0 Nm by setting

the spring constant k to obtain approximately the same moment as the maximum static

torque.
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Figure 28: Torques before (left) and after (right) the addition of torsion springs on the limbs

for the worst phase

4.4.8 Parameterization

One way to parameterize this portion of the analysis could be to input the maximum and

minimum torques based on the worst case static analysis along with the spacer diameters

and the angular span of both limbs. The backdriving torque of both harmonic drives should

be proportionate to the size of the harmonic drive and a safety factor should be set constant.

Then, the spring dimensions can be optimized to obtain the smallest springs possible while

respecting the spacer diameters, the safety factor, and the required torque.

4.5 Shaft Analysis

4.5.1 Inputs and Outputs

There are three shafts in each robot leg: the hip control shaft and the knee control shaft,

which are both inside the chassis and attached to a motor, and the exterior knee shaft,

found outside the chassis. The shafts do not rotate continuously at high speeds; instead

they oscillate and move at slow speeds. For this reason, a simple static force analysis was

performed. The inputs include all the forces and torques applied to each shaft and the

lengths of the portions of the shaft. The desired output is the diameter.
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4.5.2 Constants and Parameters

A minimum safety factor of 2.5 was chosen, as the selected material is well known but some

of the applied forces, namely the force applied from the leg member onto the shaft, could

vary due to the terrain [14]. For example, vandalism, obstacles or shortcomings with the

control system could cause slight impact forces to be felt at the shaft.

Stress concentration factors were selected for the steps and keyways on the shafts. They

were chosen as per the figures provided in Juvinall [14]. For keyways, only fatigue stress

concentration factors were provided, thus the static values were deduced from those values

using the relations provided in the textbook.

There are many parameters affecting the shaft analysis such as its length. For the anal-

ysis, the total length was divided in multiple parts, such as the bearing thickness, pulley or

hip plate thickness, torsion spring width and flange collar width. The other parameters are

the various forces and torques applied to the shafts, which have been found in the modelling

and in the analysis of the belt and pulleys in section 4.3.

4.5.3 Assumptions and Simplifications

The analysis of the shafts is done at the worst case scenario, where the legs are fully extended

(meaning higher torques and moments). It is also assumed that we are looking at the moment

were the leg is lifting itself off the ground, meaning that the shafts experience forces from

the ground and also the maximum applied torque from the motor as it is fighting the spring

torque.

It was assumed that forces are applied at the middle of shaft components (for example,

forces at bearings or pulleys). Another simplification that was made was to apply the axial

force (created by friction forces at the foot) everywhere in the shaft, as it could be applied

in either direction and load any part of the shaft. It was also assumed that the force applied

by the leg onto the shafts is vertical to the ground, as the largest component of the normal

force is likely to be in that direction. Finally, as there are many larger forces acting on the

shafts, and these are computed for worse case scenarios, the weight of the shaft assembly

itself was neglected when calculating bearing forces.

4.5.4 Material Selection

The selected material for all three shafts is marine grade stainless steel 316, as it is a common

material used in marine applications and is often used for pump shafts. The minimum yield
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Figure 29: Exterior knee shaft - Friction moments

strength of this material is of about 205 MPa, thus we shall use a value of 240 MPa for a

shaft with a cold finish [15].

4.5.5 Stress Analysis and Free-Body Diagrams

The following sections show the equations used for the static stress analysis of each shaft. A

sample calculation is also provided after. It was decided not to perform a deflection and slope

analysis as the shafts will be quite short and will not deflect much. A fatigue analysis was

considered, however the robot will be moving quite slowly and will not have long operating

hours. Thus, the complexity of this analysis was deemed unnecessary for this application.

4.5.5.1 Exterior Knee Shaft Before presenting the free-body diagram for this shaft,

some of the applied forces must be looked at more closely. As a worst case scenario, the

calculations were made for when the robot was on a slope, thus creating additional moments

on the shaft due to the added friction force. Figure 29 shows a simplified diagram of the

tibia, and how moments in two planes are created at the knee shaft.

where f is the friction force at the foot, ltibia is the horizontal extended length of the

tibia (parallel to the ground) and htibia is the vertical height of the tibia (perpendicular to
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Figure 30: Exterior knee shaft - Side section view of pulley (bearing reaction forces not

visible in view

the ground).

A side view of the pulley is shown in Figure 30. It shows the various angles related to

the leg position and the belt. The coordinate system is chosen to have the x direction in line

with the thigh. As the pulleys were chosen to be the same size (no reduction), the angles of

the belt δ1 and δ2 are both zero. The angle θ is equal to the thigh angle plus 90 degrees.

FT1 and FT2 are the belt tension forces. The value Ftibia (force of leg on shaft) is found

using a force balance on the tibia, as shown in Figure 31 and Equation 86, where N is the

normal force on the foot and mfoot is the weight of the tibia lumped at the foot (as a worst

case scenario for leg movement).

∑
Fvertical = 0 : Ftibia = N −mfootg (86)

Finally, the exterior knee shaft succumbs to the forces shown in the free-body diagrams

in Figures 32 and 33.

where Byi and Bxi are the forces at the bearings, Faxial is the axial force in the shaft

which is equal to the friction force at the foot f , tbearing is the width of the bearing, L is a
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Figure 31: Exterior knee shaft - Tibia free-body diagram

Figure 32: Exterior knee shaft - Free-body diagram in X-Z plane
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Figure 33: Exterior knee shaft - Free-body diagram in Y-Z plane

length determined by the width of the thigh and thus the spacing of the knee plates, tpulley

is the thickness of the pulley and d and D are the diameters of the shaft.

To start the analysis, the resulting forces applied at the bearings were calculated using

sum of forces and moments.

∑
Mx@Bearing1

= 0 : By2 =

(1/2tbearing + L+ 1/2tpulley)(Ftibia sin θ + Ft1 sin δ1 + Ft2 sin δ2)− fhtibia cos (θ − 90◦) + fltibia cos θ

tbearing + 2L+ tpulley

(87)∑
My@Bearing1

0 : Bx2 =

(1/2tbearing + L+ 1/2tpulley)(Ftibia cos θ + Ft1 cos δ1 + Ft2 cos δ2)− fhtibia sin (θ − 90◦)− fltibia sin θ

tbearing + 2L+ tpulley

(88)∑
Fx = 0 : Bx1 = Ftibia cos θ + Ft1 cos δ1 + Ft2 cos δ2 −Bx2 (89)∑
Fy = 0 : By1 = Ftibia sin θ + Ft1 sin δ1 + Ft2 sin δ2 −By2 (90)

These values were used to create shear force and bending moment diagrams over the

length of the shaft. These are shown in Figure 34.
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Figure 34: Exterior knee shaft - Shear force and bending moment diagrams

Critical points on the shaft were then selected and analyzed for strength. These critical

points are the steps in the shaft and the maximum bending moment point located at the

pulley. The forces and moments acting in perpendicular directions were added together using

the following formula to find a resultant.

Ftotal =
√
F 2
x + F 2

y Mtotal =
√
M2

x +M2
y (91)

The bending stress, transverse shear stress and axial stress were then found using the

following formulas [14]. In this case, no torsion is applied on the shaft since the pulley is not

fixed to the shaft. It is the reason why transverse shear stresses are taken into account.

τtransverse shear =
4

3
(
ktFtotal
πd2

4

) (92)

σbending =
32ktMtotal

πd3
(93)

σaxial =
ktFaxial

πd2

4

(94)

where kt are the stress concentration factors for the stress mode being evaluated, at the
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Figure 35: Hip control shaft - Friction moments

observed point on the shaft. These values were obtained from the Juvinall textbook [14].

The value for transverse shear was estimated by taking the value for torsion shear.

The equivalent stress was then calculated using the Von Mises formula [14], and this was

compared to the yield strength of the chosen material to ensure the safety factor is met:

σequivalent =
√

(σbending + σaxial)2 + 3τ 2transverse shear (95)

SF =
Sy

σequivalent
(96)

where σequivalent is the equivalent Von Mises stress, Sy is the yield stress of the material

and SF is the safety factor.

4.5.5.2 Hip Control Shaft The friction force created by walking on a slope would cause

additional moments to be created on this shaft as well. Figure 35 shows a simplified diagram

of the full leg, and how moments in two planes are created at the hip control shaft.

where f is the friction force at the foot, lleg is the horizontal extended length of the

leg (parallel to the ground) and hleg is the vertical height of the leg (perpendicular to the

ground).
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Figure 36: Hip control shaft - Thigh free-body diagram

The value of the leg force acting on the hip shaft, Fthigh, is found using a force balance

on the thigh, as shown in Figure 36 and Equation 97, where mknee is the weight of the thigh

lumped at the knee (as a worst case scenario for leg movement).

∑
Fvertical = 0 : Fthigh = Ftibia −mkneeg (97)

Thus, the hip control shaft succumbs to the forces shown in the free-body diagrams in

Figures 37 and 38. The coordinates were chosen as x being parallel to the ground and y

being vertical to the ground.

where the variables remain similar to the exterior knee shaft, however thip is the torque

provided by the motor at the hip, L1 is the width of the torsion spring which is positioned at

that location on the shaft, L2 is a length determined by the spacing of the hip plates, L3 is

the distance between bearing 2 and the middle of the flange collar attached to the harmonic

drive and tplate is the width of the hip plates.

Similarly to the exterior knee shaft, sum of forces and moments is used to find equations

for the forces at the bearings.
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Figure 37: Hip control shaft - Free-body diagram in X-Z plane

Figure 38: Hip control shaft - Free-body diagram in Y-Z plane
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Figure 39: Hip control shaft - Shear force, bending moment and torque diagrams

∑
Mx@Bearing1

= 0 : By2 =

Fthigh

2
(tbearing + 2L1 + 2tplate + L2)− fhleg
tbearing + 2L1 + 2tplate + L2

(98)∑
My@Bearing1

= 0 : Bx2 = − flleg
tbearing + 2L1 + 2tplate + L2

(99)∑
Fx = 0 : Bx1 = −Bx2 (100)∑

Fy = 0 : By1 = Fthigh −By2 (101)

The shear force and bending moment diagram were then created and are shown in Figure

39. This shaft also encounters torsion as the hip plates are fixed on the shaft by keys. The

torsion diagram is also shown in Figure 39. As there are two hip plates taking the torque

applied by the motor, it was assumed that each took about half the torque. This should

not affect the calculation of stress at the critical point, as the full torque is still used for the

stress at the first plate, and will determine the diameter.
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The critical points on the shaft are the two steps, as well as the keyways at both hip plates

and the flanged collar (for the harmonic drive). The strength analysis was done using the

same equations as for the exterior knee shaft, with the exception of the following additional

torsion stress equation [14].

τtorsion =
16ktT

πd3
(102)

where kt is the stress concentration factor specific to torsion.

In this situation, the torsional shear stress is much larger than the transverse shear stress

and thus the transverse shear stress was neglected. This decision is founded in the fact that

the maximum torsion shear stress is at the shaft surface whereas the maximum transverse

shear stress is in the middle of the shaft. They are not applied at the same point and are

thus not to be considered as a summation. The Von Mises equation becomes:

σequivalent =
√

(σbending + σaxial)2 + 3τ 2torsion (103)

4.5.5.3 Knee Control Shaft This shaft does not take any force or moment from the

leg. Thus, the knee control shaft succumbs to the forces shown in the free-body diagrams

in Figures 40 and 41. The coordinates are the same as for the exterior knee shaft, with x in

the direction of the thigh member. In this case, the angle of the belt tension forces is the

same as for the exterior knee shaft, with an added 180 degrees (as they are in the opposite

direction). Those forces are shown in the positive x or y direction, as they depend on the

angles.

where variables are similar to the other shafts, with Tknee the torque provided by the

motor, L1 is the width of the torsion spring and L3 is the distance from the bearing 2 to the

middle of the flange collar.

Similarly to the other shafts, sum of forces and moments is used to find equations for the

forces at the bearings.
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Figure 40: Knee control shaft - Free-body diagram in X-Z plane

Figure 41: Knee control shaft - Free-body diagram in Y-Z plane
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Figure 42: Knee control shaft - Shear force, bending moment and torque diagrams

∑
Mx@Bearing1

= 0 : By2 =
(1/2tbearing + L1 + 1/2tpulley)(FT1 sin (δ1 + 180) + FT2 sin (δ2 + 180))

(tbearing + 2L1 + tpulley)

(104)∑
My@Bearing1

= 0 : Bx2 = −(1/2tbearing + L1 + 1/2tpulley)(FT1 cos (δ1 + 180) + FT2 cos (δ2 + 180))

(tbearing + 2L1 + tpulley)

(105)∑
Fx = 0 : Bx1 = −FT1 cos(δ1 + 180)− FT2 cos(δ2 + 180)−Bx2 (106)∑
Fy = 0 : By1 = FT1 sin(δ1 + 180) + FT2 sin(δ2 + 180)−By2 (107)

The shear force, bending moment and torque diagrams were then created and are shown

in Figure 42.
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The critical points on the shaft are the two steps, as well as the keyway at the pulley

and the flanged collar (for the harmonic drive). The strength analysis was done using the

previous equations. Once again, as torsion is applied to the shaft, the transverse shear is

not used in the analysis.

4.5.5.4 Example Calculation The following is a calculation to find the required shaft

diameter of the hip control shaft based on the applied forces and length of the shaft. This

shaft is the most critical as it succumbs to the largest torque.

First, we must find the forces acting on the bearings using Equations 98 to 101. We

first find the value of Fthigh = 161.6N using a combination of Equation 86 and 97 with the

values mfoot = 0.25kg, mknee = 0.50kg and N = 169N (maximum expected normal force,

as calculated in the slope analysis Section 3.1). The friction force at the foot from the slope

analysis is f = 51.7N and from the leg lengths and angles we get hleg = 190.0mm and

lleg = 268.6mm. The other values are a bearing thickness (length) tbearing = 3mm, a hip

plate thickness of tplate = 10mm, L1 = 20.8mm is the width of the torsion springs at the hip,

L2 = 75.5mm is determined by the required length of the knee control shaft and L3 = 25mm

to give space for the flange collar. Now we get the forces on the bearings:

∑
Mx@Bearing1

= 0 : By2 =

161.6N
2

(3mm+ 2(20.8mm) + 2(10mm) + 75.5mm)− (51.7N)(190.0mm)

3mm+ 2(20.8mm) + 2(10mm) + 75.5mm
= 9.9N

(108)

∑
My@Bearing1

= 0 : Bx2 = − 51.7N(268.6mm)

3mm+ 2(20.8mm) + 2(10mm) + 75.5mm
= −100.3N (109)∑

Fx = 0 : Bx1 = −Bx2 = 100.3N (110)∑
Fy = 0 : By1 = 161.6N − (9.9N) = 151.8N (111)

Note that some values are negative due to the moments created by the friction on the

leg. The signs would be reversed if the friction was in the opposite direction.

The most critical point on the shaft is the step next to bearing 2, thus this is the point

analysed here. From the creation of the force diagrams shown in Figure 39 we get that at its

location of 136.9 mm from the middle of bearing 1, the bending moments are Mx = 14.8N

and My = −150.4N . The torsion is equal to T = 47440Nmm and the axial force is the

friction force Faxial = f = 51.7N . We use Equation 91 to get the total bending moment of

M = 151.2Nmm. Then Equations 102, 93 and 94 can be used to find the stresses at that

point. Using the Juvinall textbook [14], the concentration factors are found to be 2.0 in

53



bending, 2.1 in axial stress and 1.7 in torsion. A value of small diameter of d = 19.5mm is

assumed for now, and values of stress are verified later using the safety factor.

τtorsion =
16(1.7)(47440Nmm)

π(19.5mm)3
= 55.4MPa (112)

σbending =
32(2.0)(151.2Nmm)

π(19.5mm)3
= 0.42MPa (113)

σaxial =
2.1(51.7N)
π(19.5mm)2

4

= 0.36MPa (114)

Then the Von Mises Equation 103 is used to get the equivalent stress, and the safety

factor is verified. The selected diameter gives the required safety factor and is therefore

considered adequate.

σequivalent =
√

(0.42MPa+ 0.36MPa)2 + 3(55.4MPa)2 = 95.9MPa (115)

SF =
240MPa

95.9MPa
= 2.5 (116)

Table 2 summarizes the bearing forces found for each shaft as well as the required diam-

eters for each shaft.

Table 2: Calculated shaft diameters and forces at bearings

Values Exterior Knee Shaft Hip Control Shaft Knee Control Shaft

Bx1 [N] 1095.4 100.3 967.2

Bx2 [N] 790 -100.3 967.2

By1 [N] 252.6 151.8 0

By2 [N] -93.5 9.9 0

d [mm] 13 19.5 17.5

D [mm] 17 23.5 21.5

4.5.6 Critical Review

The diameters found in Table 2 are realistic for the selected material and relatively small

torques and bending moments. The exterior knee shaft has the smallest values as it does not

succumb to torsion. As the hip control shaft succumbs to the largest torsion, it naturally

has the biggest diameters. This shaft however has the smallest bearing forces as it does not

have to resist to the belt tensions like the other two shafts.
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4.5.7 Parameterization

The goal of the shaft parameterization will be to take inputs such as shaft lengths (based on

other component sizes), torques and forces and find the required shaft diameters for those

loads. An estimated diameter will be chosen and increased until a diameter that meets the

safety factor is found.

4.6 Keys

4.6.1 Description

This section gives information and calculations for the design of the keys on the shafts. The

input is the applied torque and the output is the required length. For this analysis, the shaft

diameters (found in the shaft analysis) are considered as a constant. The key cross-sectional

dimensions are chosen as a function of the shaft diameter: the width is a quarter of the

diameter and the height is a third of the diameter. These values were chosen to balance

the shear and compression acting on the key [14]. A safety factor of at least 1.5 will be

maintained, however it may be surpassed as the key length will be chosen to be the width

of the part it is holding, for better stability. The key material is selected to be the same as

the shaft (marine grade stainless steel 316), however it is not cold treated and a lower yield

strength (the minimum value) of Sy = 205MPa is chosen. This value is selected to ensure

that the keys would fail before the parts (pulleys, flange collars and hip plates), as the key

is easier to replace.

4.6.2 Stress Analysis and Free-Body Diagrams

The free-body diagram in Figure 43 can be used to illustrate the forces acting on the key.

Using the chosen cross-sectional ratios of the key (the width is a quarter of the diameter

and the height is a third of the diameter), the following equations for the length of the key are

found, as a function of the applied torque. The first is for the compressive force (crushing)

acting on the key, and the second is for the shear of the key [14].

Lrequired =
12T

Syd2
(117)

Lrequired =
8T

0.58Syd2
=

13.79T

Syd2
(118)
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Figure 43: Keys - Free-body diagram (cross-section of shaft)

where Lrequired is the required length of the key, T it the torque applied on the key,

Sy is the yield strength of the key material and d is the diameter of the shaft. For the

chosen geometry, the shear stress will always be slightly larger, thus Equation 118 is used.

The required key length must be no larger than the part it is holding. Safety factors are

calculated to ensure 1.5 is reached.

The following is an example of the key dimensions calculation for the hip plate on the

hip control shaft. First, the height and width are found based on chosen diameter ratios.

Then, Equation 118 is used to find the length. The applied torque is of 47440 Nmm, the

shaft diameter at that point is 23.5 mm and the yield strength of the chosen material is 205

MPa.

height = d/3 = 23.5/3 = 7.83mm (119)

width = d/4 = 23.5/4 = 5.88mm (120)

Lrequired =
13.79T

Syd2
=

13.79× 47440Nmm

205MPa× (23.5mm)2
= 5.78mm (121)

As the width of the hip plate is of 10 mm, the key length is extended to L = 10mm, thus

we get the following safety factor:

SF =
L

Lrequired
=

10mm

5.78mm
= 1.73 > 1.5 Good! (122)
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4.6.3 Critical Review

As the robot is a small application with relatively low torques, it would make sense that the

size of the keys be relatively small as well. Thus, these results are representative.

4.6.4 Parameterization

This part will be parameterized by inputing the torque and shaft diameter and getting its

required length. This length would then be increased to equal the width of the part it is

holding, or the part itself will be made wider to ensure the key has an adequate length.

4.7 Bearings and Spacers

4.7.1 Inputs and Outputs

This section shows the analysis of the sleeve bearings (bushings) and gives specifications for

the spacers on the shafts. The main input for the bearings is the shaft diameter and the

radial forces at the bearings (calculated in shaft analysis). The output is the required length

of the bearing. Spacers are not highly critical, but are included in this section to specify

basic geometries and materials.

4.7.2 Constants and Parameters

For these analysis’ the shaft diameters (found in the shaft analysis) are considered as con-

stants. For the safety factor, the same value as the shafts (2.5) will be aimed for.

4.7.3 Assumptions and Simplifications

Friction in the sleeve bearings is neglected as its exact value was difficult to calculate and the

worst case value calculated was relatively small. See the attempted calculations in Appendix

B.5.

The sleeve bearings are chosen to have a constant thickness, as this does not affect their

performance as per the calculations. A thickness of 2 mm was chosen based on existing

sleeve bearings [16] and the fact that we will likely have very short bushings. The bearings

will also have a flange to help position them in the housing and on the shafts as well as take

the minor axial loads coming from the legs. As the axial loads are not very large, the size of

the flange was not based on analysis and is simply based on the size of the shaft step and

thickness of the spacer that will be in contact with the flange.

57



Figure 44: Sleeve Bearing - Dimensional diagram

As the spacers are not taking excessive axial loads, their thickness is chosen as 5 mm.

This value is expected to be sufficient to maintain the axial position of parts, while also

keeping the bushing flange at a reasonable size.

4.7.4 Material Selection

The sleeve bearings were chosen as sintered bronze bearings. The reason for this selection is

that this is a common and well-known material, is corrosion resistant and is self-lubricating.

The useful properties of bronze for the analysis are Pmaterial = 55MPa and PVmaterial =

1.8MPa m/s. A lighter material, such as plastic, might have been chosen, however these

are more limited in temperature ranges and their weight difference is not considerable for a

small bushing. The sleeve bearings are press fit into their respective housing, and the shaft

is inserted inside with a clearance fit.

The spacers are selected to be made of polycarbonate, as it is lightweight, thermally

stable, can take impact forces and is moisture resistant [17].

4.7.5 Stress Analysis and Free-Body Diagrams

The diagram in 44 shows the important dimensions of the sleeve bearing for the calculations.

where L is the sleeve bearing length, d is the inner diameter (shaft diameter for simplifi-

cation) and t is the thickness of the bearing wall (constant).

The original analysis was done for roller bearings, where it was found that these were
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not adequate for the static forces encountered in this application (see Appendix B.4).

Instead, the sleeve bearings (bushings) were chosen, as they can take more radial forces.

The method used to determine the required length of the sleeve bearing is the pressure-

velocity (PV ) factor [18]. This value is a material property and is described by Equation

125. As this application uses very low velocities, the pressure (P ) is also observed. This

is done using Equation 123. Analysing the velocity is unnecessary for this case, as the

application is close to static.

P =
F

dL
(123)

V =
πdn

60× 103
(124)

PV =
πFn

60× 103L
(125)

where F is the radial force acting on the bearing in N and n is the rotational speed of

the shaft in rpm. The rotational speed is assumed as the maximum value reached during a

cycle. This gives a somewhat conservative estimate of the pressure-velocity factor.

The following is an example where the exterior knee shaft sleeve bearing length is found.

This shaft has the highest forces on its bearings due to belt tension and forces from the leg.

Equations 123 and 125 are rearranged to get the minimal required length of the bearing. To

do so, the bearing material properties are used: bronze has operating limits of Pmaterial =

55MPa and PVmaterial = 1.8MPa m/s. Other values are d = 13.0mm (from shaft analysis

Section 4.5.5.4), n = 1.60rpm (maximum rotational speed from modelling) and F = 1124.1N

(the combination of the forces acting on the bearing in x and y from the shaft analysis, using

Equation 91).

Lrequired =
F

dPmaterial
=

1124.1N

13.0mm× 55MPa
= 1.57mm (126)

Lrequired =
πFn

60× 103PVmaterial
=

π × 1124.1N × 1.60rpm

60× 1000× 1.8MPa m/s
= 0.05mm (127)

Thus we choose the largest value of 1.57 mm and apply the safety factor to get L. This

value is quite close to the value assumed for the shaft calculations, which was 4.0 mm, thus

we can round up to this value.

L = SF × Lrequired = 2.5× 1.57mm = 3.93mm ≈ 4.0mm (128)
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4.7.6 Critical Review

The bearing lengths make sense as the chosen material is quite strong for this application,

meaning that only small lengths are required. The thickness of the flange (2 mm) also

contributes to the length of the bearing but removes some length from the part of the sleeve

bearing radially in contact with the housing. It will likely be required to choose longer

bearings due to this.

4.7.7 Parameterization

The parameterization goal will be to find the required length of the bearing for the applied

bearing forces, which depend highly on the weight of the robot. A value for the length of

the bearing will need to be estimated for the shaft analysis in order to find bearing forces,

and then the assumed length will be modified following the bearing analysis. It will be an

iterative process. However, as seen in the example with the worst case scenario, the length

of the bearings is already quite small. Another option would be to simply set a length

that works for all situations, and keep it constant without parameterization. Otherwise, a

minimum sleeve bearing length will be set to ensure stability and manufacturability of the

assembly (for example, the hip shaft bearings take very low load, thus we would limit the

bearing length to a minimum of 3 mm).

4.8 Fasteners

4.8.1 Inputs and Outputs

Inputs include the number of bolts n, distance P from the applied forces to the centroid,

distance from the bolt to centroid r, and angles ρ and ε between P and x around z and

y respectively (variables shown in Figure 45). The minimum acceptable bolt diameter d,

member thickness t and distance from bolt to member edge ` are then calculated.

4.8.2 Constants and Parameters

A safety factor of 2.5 was selected. This is in accordance with the recommendations pro-

vided by Juvinall and Marshek for average materials operating in ordinary environmental

conditions, subjected to loads and stresses that can be determined [14]. Since the maximum

stresses have been simulated, the maximum stresses can be determined with relative accu-

racy, however due to the uncertainty of vandalism, a smaller safety factor was not selected;
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thus 2.5 strikes a solid balance between being conservative and still flexible. A safety factor

for tension is specific has been set at 2; as shown in the example below, the initial bolt

tension sets the safety factor at 2.3, so the actual value will be 2.3 or smaller depending on

the applied load. Bolt properties are also constant and are found in Table 3

4.8.3 Assumptions and Simplifications

The following assumptions were made while analysing the bolts at the hips:

1. Absolutely rigid members [10]

2. Ductile bolt material

3. Negligible impact loading and vibrations

4. Washers do not greatly influence the found safety factor, and are therefore not included

in the analysis

5. Bolt threaded and unthreaded length can be customized and do not need to follow the

formulation provided in Shigley or Juvinall

6. Fatigue loading is negligible

7. Load due to tensile moment is evenly distributed between all bolts (which would in

reality become larger the further from the pivot point the bolt is)

4.8.4 Material Selection

SAE class 9.8 medium carbon bolts were pre-emptively selected as they cover a large swath

of diameters (M1.6-M16), have good tensile and proof strength, and are not as expensive

as higher class bolts. Environmental resistance is not paramount as all bolts are contained

within the chassis or bellows, however since condensation is likely, some degree of protection

against corrosion is necessary. Coarse-tooth bolts were selected. Although fine tooth bolts

have higher tensile area, allowing for smaller diameter bolts, and are less likely to loosen

over time, their availability in sizes below M8 seem severely limited [10] [19].
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Figure 45: Force-Body Diagram of hip bolts

Table 3: Properties of ISO Class 9.8 Bolts

Property Measure

Bolt sizes M1.6-M16

Proof Strength Sp 650 MPa

Yield Strength Sy 720 MPa

Tensile Strength Sut 900 MPa

Endurance Strength Se 140 MPa

Fatigue Stress-Concentration Factor kf 3.8 (Cut Threads)
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Figure 46: Primary and Secondary Shear Stresses in Bolts

4.8.5 Free-Body Diagram

The following example illustrates the stress analysis for the fasteners holding the hip plates

and motor to the chassis, illustrated in Figure 45. The clamping members are assumed

to be made of Aluminium 6061, with a yield strength of 276MPa [9], and a thickness of

an eighth inch for each member (3.175mm), giving g = t1 + t2 = 6.35mm. The bolts are

made of medium carbon steel (class 9.8), with an elastic modulus of approximately 200MPa

[20]. The most extreme case for loading on a bolt is the maximum robot size (5kg of litter)

with the leg fully extended, when θ = 17.18◦, φ = −51.89◦ (from horizontal), r1 = 100mm,

R = 280.17mm. r is assumed to be 70.71mm and rp is assumed to be 70mm. The initial

bolt diameter is estimated to by 5mm (M5). The mechanical properties of class 9.8 steel is

found in Table 3. In this case, we can compute the moment arm P and angle of application

ρ as

x = r1 cos θ +R cosφ = 268.44mm (129)

y = 0mm (130)

z = r1 sin θ +R sinφ = −190.9012mm (131)

ρ = 0◦ (132)

ε = arctan
(z
x

)
= −35.41◦ (133)
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P =
√
r21 +R2 − 2r1R cos(φ− θ − π)

=
√

(100mm)2 + (280.17mm)2 − 2 · 100◦ · 280.17 cos(−51.89◦ − 17.18◦ − π)

= 329.40mm

(134)

with maximum foot forces given by

Fx = 100N (135)

Fy = 100N (136)

Fz = 160N (137)

With Fz being the normal force when on flat ground (maximum), Fx being the max-

imum friction force in the x direction and Fy being the maximum friction force in the y

direction, while on a 20◦ incline. Both friction forces will never occur simultaneously, as

100N is the total friction amplitude and would thus be split between them, however this

gives a conservative estimate. Equally, the maximum normal and friction forces will never

occur simultaneously, however for the sake of being conservative both are considered here

simultaneously.

The pure shear reaction forces Vx and Vy, tensile reaction force Ft and reaction moment

M are.

Vx = Fx = 100N (138)

Vy = Fy = 100N (139)

Ft = Fz = 160N (140)

My = (Fz cos ε− Fx sin ε)P

= ((100N) cos(0◦)− (100N) sin(0◦))(280.17mm)

= 62041Nmm

(141)

Mz = (Fy cos ρ− Fx sin ρ)P + T

= ((160N) cos(−35.41◦)− (100N) sin(−35.41◦))(280.17mm)

= 32940Nmm

(142)
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Where T is any pure moment applied along the member (zero in this case). The centroid

is located via symmetry and found to be the center of the bolts.

4.8.6 Stress Analysis

Identified failure modes include pure shear in the bolts, edge shearing of the member, crush-

ing, tensile yielding in the bolts, and tensile yielding of the member (which will be evaluated

separately in Section 4.10).

Primary shear stresses F ′sh and secondary shear stresses F ′′sh are shown in Figure 46.

The primary shear shear stresses are given by

F ′sh =

√
V 2
x + V 2

y

n
=

√
(100N)2 + (100N)2

4bolts
= 35.35N (143)

where n is the number of bolts. The reaction forces required to counter Mz are given by

Mz = F ′′sh1r1 + F ′′sh2r2 + · · ·+ F ′′shnrn (144)

Since r1 = r2 = r3 = r4, the secondary shear stress is given by [10]

F ′′sh =
Mzr

nr2
=
Mz

nr
=

32940Nmm

(4bolts)(70.71mm)
= 116.46N (145)

Finally, the total shear force per bolt is given by

Fsh =

√
F ′sh

2 + F ′′sh
2 =

√
(35.35N)2 + (116.46N)2 = 121.70N (146)

And the shear stress

τ =
Fsh
Ab

(147)

where Ab is the cross-section of the bolt along the two clamping members. The safety

factor is given by

SF sh =
Ssy
τ

=
SsyAb
Fsh

=
0.58(340MPa)π(5mm)2

4(121.70N)
= 67.36 (148)

Where Ssy is the shear yield strength, given by the Maximum-distortion-energy theory

for ductile materials as Ssy = 0.58Sy [14]
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The stress for bearing forces varies depending on the individual member thicknesses [21].

For members of thickness t1 = t2 = 3.175mm, the bearing stresses are given by

σ =
Fsh
t1d

=
121.70N

(3.175mm)(5mm)
= 7.66MPa (149)

where d is the nominal major diameter of the thread, ti is the thickness of member i and

Fsh is the shear stress held by the bolt.

The safety factors for the bolt and members are given by

(SF )crb =
Syb
σ

=
200MPa

7.66MPa
= 26.08 (150)

(SF )crm =
Sym
σ

=
276MPa

7.66MPa
= 36.00 (151)

With the equation inverted, the minimum required member thickness to match the safety

factor is 0.2205mm. This is well below the selected thickness of 3.175mm used.

Edge shearing occurs when the member shears between a bolt and it’s edge, usually

characterized by a bolt being in too close proximity to the member’s edge [14].The area for

edge shearing is given by

Aes = `it (152)

where ` is the distance from the outside of a bolt to it’s edge in the direction of the

applied force and t is the thickness of the thinnest member. For example, the area for edge

shearing for an applied force in x would give Aesx = `xt.

The shear force is given by Fi from Equation 146. The safety factor for edge shearing is

given by

(SF )es =
0.577Sym

τ
=

0.577Sym
Fsh

Aesx

=
0.577Sym`it

Fsh
(153)

The required distance from the edge for bolt i is thus given by isolating `i and applying

the desired safety factor.

`i =
(SF )esFsh
0.577Symt

=
2.5(121.70N)

0.577(276MPa)(3.175mm)
= 0.60mm (154)
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Shigley recommends placing the bolts 1.5 times the diameter away from the edge (so

7.5mm; the resulting ` can be increased to match this value, or retained if above this value.

The initial tension in the bolts is given by [14]

Fi = kiAtSp = 0.7(14.175mm2)(650MPa) = 6449.9N (155)

where ki is a constant between 0.7 and 1.0 (chosen here to be 1.0), At is the tensile

strength area of the thread given in Table 10.2 of Juvinall and Marshek and curve-fitted

with MATLAB’s Curve Fitting Tool to At = 0.7023d2 − 2.669d+ 9.963, and Si is the proof

strength of the material, given in Table 10.5 of Juvinall and Marshek. The tightening torque

is given by

T = 0.2Fid = 0.2(6449.9N)(5mm) = 6449.9N (156)

where d is the nominal major diameter of the thread.

The spring constants of the bolt and member are respectively

Ab =
π(5mm)2

4
= 19.635mm2 (157)

kb =
AbEb
g

=
(19.635mm2)(200MPa)

2(3.175mm)
= 618.42

N

mm
(158)

Am ≈ d2 + 0.68dg + 0.065g2 = (5mm)2 + 0.68(5mm)(6.35mm) + 0.065(6.35mm)2

= 49.21mm2
(159)

km =
AmEm
g

=
(78.663mm2)(276MPa)

2(3.175mm)
= 2138.93

N

mm
(160)

where g is the effective length, shown in Figure 47, Ab == At, the nominal major area

of the thread, and Eb and Em are the elastic modulus of the bolt and members respectively.

The clamping area Am can be approximated for small clearance fits with Equation 159 [14].
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Figure 47: Determining spring constant of bolt and clamping member [14]

With an external tensile force Ft, the bolt tension and clamping force are given by

Fb = Fi +
kb

kb + km

1

n

(
Ft +

My

(rp + rx)

)
= 6449.9N +

618.42 N
mm

618.42 N
mm

+ 2138.93 N
mm

1

4bolts

(
160N +

62041Nmm

(70mm) + (50mm)

)
= 6487.81N

(161)

Fm = Fi −
km

kb + km

1

n

(
Ft +

My

(rp + rx)

)
= 6449.9N −

618.42 N
mm

618.42 N
mm

+ 2138.93 N
mm

1

4bolts

(
160N +

62041Nmm

(70mm) + (50mm)

)
= 6318.55N

(162)

where Ft is the applied external force, kb is the spring constant of the bolt, km is the

spring constant of the clamping members, My

(rp+rx)
is the tension required to resist the moment

My around the pivot point rp (for the bolt the furthest from the pivot, and thus experiencing

the highest stress), and n is the number of bolts. The applied force has little impact on the

force felt by the member or bolt; the initial tension is still much larger. The safety factor in

tension for the bolt is
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σb =
nFb
At

=
4(6487.81N)

π(5mm)2
= 330.42MPa (163)

SF t =
Syb
σ

=
720MPa

329.616MPa
= 2.17 (164)

It was found that the safety factor sits around 2.2 regardless of the external load; this is

likely because the initial tension of the bolt is significantly larger than the external forces,

and thus they have little impact on the safety factor. A factor as low as two is allowed for

tension. For cases where the bolts do not all have the same distance rp + rx, then only the

number of bolts at distance rp + rx should be considered.

4.8.7 Critical Review

Bolts that are likely to fail are found in two places; the bolts holding the hip motors and

brackets to the chassis, and the bolts connecting the lower leg (tibia) to the pulley at the

knee. The former was analyzed above. The safety factors for the fasteners at the hips are

acceptable for all modes of failure for d = 4mm. The safety factor in tension is unlikely

to dip under 2. Even with the normal force Fz increased by a factor of 100, the safety

factor in tension is above 1.5; the majority of the loading in the bolts is still from the initial

tightening, and thus the required safety factor has been lowered to 2. The safety factor in

shear is more volatile, however, and given large loads or very small bolt diameters and r,

it can pass below 2.5. Since the shear safety factor depends on the distance between the

bolts and their centroid r and the bolt diameter d, but r and n are set by the part geometry

independently of the fastener analysis, the bolt size is the only parameter influencing the

shear safety factor. Crushing depends on the bolt diameter and thickness and edge shearing

depends on thickness and distance `. There are thus three parameters that can be modified

to minimize the safety factors.

Some geometry was ignored. For example, when calculating the forces in tension, the

load was evenly divided between the bolts. This is not correct, as the bolts furthest from the

pivot point would take more force than those closer. Since the safety factor in tension does

not vary until increasing the applied load by a couple orders of magnitude, this simplification

is acceptable. For the given example, the height between the center of the hip bracket and

the bolts shown in Figure 45 was forgotten. This would have reduced the moment impacting

the tensile force, and so does not negatively impact the safety factor of the analysis. Finally,

The bolts were not analyzed for fatigue either. Juvinall and Marshek note that fatigue occurs
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only with repeated plastic yielding [14]. Since the bolts stay under their yield strength at

all times, fatigue should not be a concern.

4.8.8 Parameterization

The distance P from the applied forces to the centroid, distance from the bolt to centroid

r, and angles ρ and ε between P and x around z and y respectively will be given as inputs

for parametrization. The values of d, tm and ` are determined by first generating a range of

values for all three, then creating 3D matrices with the following 2D principle extended to

3D:

Matrixr =


r1 r1 . . . r1

r2 r2 . . . r2

. . . . . .

rn rn . . . rn

 (165)

Matrixd =


d1 d2 . . . dn

d1 d2 . . . dn

. . . . . .

d1 d2 . . . dn

 (166)

The stress analysis functions are then applied to each combination of d, tm and ` and the

one that minimizes some measure of space occupied (such as minimizing the area occupied by

the bolts) while maintaining the desired safety factors of 2 for tension and 2.5 for everything

else will be selected.

4.9 Bellows

4.9.1 Inputs and Outputs

The bellow covering the hip and knee joints must be able to provide the required range

of movement. The inputs include the available length for the bellow (nominal length), the

required inner diameters of the conical bellow (chassis leg hole size and knee shaft size) and

the required angular range of movement. The outputs are the number of folds required and

their size.
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4.9.2 Constants and Parameters

The chosen minimum safety factor for the bellow is 2.5 as to stretch the bellow to its

maximum or minimum on a regular basis could cause it to fail prematurely. The bellow

may also bend or stretch in unpredictable ways, and is subjected to the movement of two

joints. The thickness of the bellow is chosen to be a constant value of 3 mm for a balance of

flexibility and sturdiness. The inner diameter depends on the required size of the hole in the

chassis for the leg. The hip will be positioned as close as possible to the side of the chassis

to ensure a smaller hole is required.

4.9.3 Assumptions and Simplifications

For the calculations, it is assumed that the bellow is bent into a circular bend. The safety

factor is added to make up for any behavior deviating from this assumption. As the bellow

covers two joints, it will sometimes be bending in two opposing directions. However, as the

distance between the joints is small, these bends will likely cancel each other to a certain

extent: the bellow might come to rest on the thigh member inside it, which is considered

acceptable as no sharp edges will be present to wear out the bellow, and it will not interfere

with any moving components. Thus, the analysis is carried out for the maximum total angle

provided by both joints in the same direction.

As the bellow is conical, the required extension and retraction are calculated using the

largest diameter of the bellow, as this gives the more stringent requirements.

4.9.4 Material Selection

The chosen material for the bellows is silicone as it is a moldable flexible material which is

uv-resistant, waterproof and operates on a large range of temperatures [22].

4.9.5 Free-Body Diagram

The bellow analysis is mainly geometric, thus the required dimensions are shown in Figure

48. The bellow at an angle is shown as being constant diameter, however the values with a

conical bellow would be the same, but with using di,max in calculations.

where nfold is the number of folds in the bellow, Lnom is the nominal length of the bellow

(straight un-extended), Lfold is the height (or width) of the folds when the bellow is at

nominal length, di is the inner diameter of the bellow (max and min for conical bellow), ψ
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Figure 48: Bellow - Dimensions and Geometry

is the bend angle of the bellow in degrees, Lext is the extended length of the bellow and Lret

is the retracted length of the bellow.

To determine the required inner diameter of the bellow at the chassis, the following

diagram is used:

4.9.6 Analysis

First, the required inner diameter of the bellow is computed using the following equation,

based on Figure 49. We use L = 50mm based on harmonic drive diameter at the hip, θ = 45◦

the maximum angle of the hip, w = 70mm an approximation based on the pulley diameter

and tchassis = 5mm.

di,max = hangle + hthigh + 2(tchassis) = L tan θ +
w

cos θ
+ 2tchassis

= 50mm tan 45◦ +
70mm

cos 45◦
+ 2(5mm) = 159mm

(167)

Next, the known geometrical values are used to find the required extended length and

retracted length of the bellow. The nominal length and required angular range are used to

get a nominal circumference circnom. The values used are ψ = 40.2◦ the total angle of the
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Figure 49: Bellow - Finding the required inner diameter based on chassis leg hole

hip and knee in the most extended position of the leg and Lnom = 94mm the approximated

nominal length of the bellow based on limb lengths and space for the bellow hose clamps.

circnom =
360

ψ
Lnom

360

40.2◦
94mm = 841.5mm (168)

This value makes it easy to get the retracted and extended length by subtracting or

adding an internal diameter (using the maximum value for the conical bellow) to get the

inner and outer circumferences of the bend (circi and circo) and converting back to lengths:

circo = circnom + di,max = 841.5mm+ 159mm = 1000.5mm (169)

Lext = circo ÷
360

ψ
= 1000.5mm÷ 360

40.2◦
= 111.8mm (170)

circi = circnom − di,max = 841.5mm− 159mm = 682.5mm (171)

Lret = circi ÷
360

ψ
= 682.5mm÷ 360

40.2◦
= 76.2mm (172)

Now for the design of an appropriate bellow to fill those length requirements, the following

expressions are used. The first finds the minimum retracted length Lmin of a bellow as a

function of the number of folds nfold and the thickness of the bellow wall t. The second finds

the maximum extended length Lmax of a bellow as a function of the number of folds and
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their ”height” at nominal length Lfold. t is a constant and is set to 3 mm and nfold and Lfold

are estimated until the proper safety factor is met.

Lmin = 2nfoldt = 2(8)(3mm) = 48mm (173)

Lmax = 2nfoldLfold = 2(8)(8.7mm) = 139.2mm (174)

These values are then compared with the required values by calculating the extension/re-

traction value and finding the safety factor SF :

SF =
Lmax − Lnom
Lext − Lnom

=
139.2mm− 94mm

111.8mm− 94mm
= 2.5 Good! (175)

SF =
Lmin − Lnom
Lret − Lnom

=
48mm− 94mm

76.2mm− 94mm
= 2.6 Good! (176)

Thus the bellow has 8 folds of 8.7 mm in size. The value of di,min is chosen based on the

length of the exterior knee shaft, plus some clearance, giving a value of about 102 mm.

4.9.7 Critical Review

The analysis (with the added safety factor) gives a reasonable estimate of the dimensions of

the bellow. However it is difficult to know to which extent it is being over designed, as its

behavior in movement is difficult to predict and the equations use approximations (such as

the fact that the bellow bends in a perfectly circular shape).

4.9.8 Parameterization

The goal for the parameterization of this component is to use known geometry (nominal

length, required angle, required inner diameters) to find an appropriate combination of the

number of folds and their height at nominal length.

4.10 Hip Bracket

4.10.1 Inputs and Outputs

This section is focused on the analysis of the hip bracket, which is the assembly holding the

leg (at the hip control shaft) and attaching it to the chassis. Due to the required range of

movement of the leg, this bracket may be quite high. Thus this analysis will take its height

and all the forces applied to it and calculate the required thickness of the bracket to prevent

failure.
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Figure 50: Hip Bracket - Bending Stress

4.10.2 Constants, Parameters and Assumptions

The safety factor chosen for this part is 2.0 as it is not moving and is merely a structural part.

The biggest consideration for this bracket is bending at its lower corners in the direction of its

thickness, as the bracket will be quite high. Thus, only this stress calculation is performed.

4.10.3 Material Selection

The chosen material is aluminum 6061-T6 as it is marine grade, strong and lightweight. Its

yield strength is of about 276 MPa [9].

4.10.4 Free-Body Diagram

The following figure shows the various forces applied on the hip bracket and the point being

analysed for bending.

where values of f and hleg are as described in Figure 35, and their product is the moment

created by friction at the foot.
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4.10.5 Stress Analysis

The equation for the bending moment at the identified critical point (Mcrit) is shown in the

following equation. The values are f = 51.7N , hleg = 190mm and hbracket = 150mm based

on required leg movement clearance.

∑
M : Mcrit = f × hleg − f × hbracket = 51.7N(190mm− 150mm) = 2066.8Nmm (177)

Now to find the required minimum thickness of the bracket, the stress equation (for a

rectangular cross-section) [14] is used with the chosen safety factor. Values of SF = 2,

Sy = 276MPa and w = 100mm are used.

t =

√
6SF ×Mcrit

wSy
=

√
6(2)× 2066.8Nmm

100mm(276MPa)
= 0.9mm (178)

4.10.6 Critical Review

The required value of thickness is quite small as the critical point is quite close to the ground,

making the effect of the moment created by friction forces at the foot smaller.

4.10.7 Parameterization

This component will not be parameterized based on the previous analysis. Instead, the

thickness value will be determined by the length of the sleeve bearings for the hip shaft, as

they are supported by this bracket. The width of the bracket is based on the size of the

harmonic drive and the height is ultimately based on harmonic drives as well, as they affect

the required vertical space for the leg range.
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5 Discussion and Future Work

The bolts holding the hip brackets to the chassis were analysed, but the bolts holding together

the tibia and knee pulley, shown in Figure 7, were not. Since the bolts must fit through the

pulley, space is limited, and so there is a risk of failure. Although not presented here, they

will be parameterized alongside the bolts at the hips.

The hip plates in Figure 3 acting as the thigh and connecting the hip to the knee were not

analyzed. They are made of Aluminium 6061 and have connecting pieces between them to

carry compression and torsion loads. The remaining tensile and bending forces are likely not

enough to damage the plates, and so it was decided that analyzing them was not necessary.

The bellows were analyzed to ensure they could compress and extend to the required

lengths; no form of stress analysis was done to ensure that tearing does not occur.

The lower leg, or tibia, is press fit into a bracket at the knee. The foot is also press

fit into the tibia. Neither were analyzed for safety factors, required heating temperature to

press fit, or the required interference to ensure parts do not separate due to vibrations or

regular loading.

The chassis itself was not analyzed. The robot itself is not too heavy, however if too thin

a structural plate to mount all the components is used, then bending is a serious concern,

as it could cause the structure of the chassis to pull away from the weatherproof polymer

shell. The shell itself was also not analyzed, although the only loads that are applied on it

are reactions to the bellows stretching, whatever stresses pass from the chassis to the shell

via bending, and humans pushing on the outside of the shell.

The keys and bolts connecting the shaft collars to the Harmonic Drive and motor, and

the bolts connecting the Harmonic Drive and motor to the hip brackets were not analyzed

either, as it is highly likely that both Harmonic Drive and Maxon Motor selected bolt and

key sizes that are sufficiently safe as long as operating within their design conditions.

The silicone sock covering the foot is held in place using a screw-on compression cap,

shown in Figure 6. The sock was not analyzed to ensure it would not tear away while

walking.

A tensioner in the form of a torsion spring was added to account for stretching in the belt

over time and with temperature variations. The impact of the spring on the belt tension as

a function of its various parameters could not accurately be modelled.

As an accurate method of determining the sleeve bearing (bushing) friction could not

found, this effect was neglected from the overall analysis.
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A Equation Derivation

No additional equation derivation.

B Additional Analysis

B.1 Robot Coordinate System

For some calculations, the cartesian coordinates are used. Figure 51 shows the coordinate

system used throughout the report.

Figure 51: Coordinate System for the robot

B.2 Approximation Curved Beam

This is an alternative method to calculating the curved beam stresses due to the complex

cross section.

The approximation is to calculate the distance from centroidal axis to neutral axis e.
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The values are obtained from section 4.2

e =
I

rcA
=

π
64

((17.175mm)4 − (14mm)4)

(17.175mm)(π
4
((17.175mm)2 − (14mm)2)

= 1.79mm (179)

ci = r − e = 8.58mm− 1.79mm = 6.80mm (180)

σi =
Mci
Aeri

=
(20255.6Nmm)(6.8mm)

(8.59mm)(77.7mm2)(1.8mm)
= 115.5MPa (181)

n =
Sy

σi + σx
=

250MPa

115.5MPa+ 1.1MPa
= 2.2 (182)

B.3 Limbs and Internal Stresses

Only the member BC stress diagram is shown in Section 4.2. All three links internal stresses

are shown below.

Figure 52: Axial Force Diagram for link AB
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Figure 53: Shear Force Diagram for link AB

Figure 54: Moment Diagram for link AB
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Figure 55: Axial Force Diagram for link BC

Figure 56: Shear Force Diagram for link BC
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Figure 57: Moment Diagram for link BC

Figure 58: Axial Force Diagram for link CD
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Figure 59: Shear Force Diagram for link CD

Figure 60: Moment Diagram for link CD

B.4 Ball Bearings

Originally it was decided to use ball or roller bearings for the shafts in order to limit fric-

tion. However, as this application is mostly static, reasonably sized bearings were unable to

resist the static radial forces and thus sleeve bearings (bushings) were selected instead. The

following equation was used to calculate the required rated capacity Creq of the ball bearings

[14]:

Creq = FeKa(
L

KrLR
)0.3 (183)
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where Ka is the application factor, Kr is the reliability factor, LR is the rated life in

revolutions, L is the required life in rpm and Fe is the equivalent force, which is dependant

on the ratio of axial to radial forces. As an example the value for required rated capacity is

calculated for the exterior knee shaft. The values of Ka = 1.4 for light impact and Kr = 1.0

for 90% reliability are chosen based on the Juvinall textbook suggestions [14]. A life of 10000

hours is chosen as the application is used intermittently and requires good reliability. Using

the maximum speed of 1.6 rpm, we can get the value of L = 960000 revolutions. The value

of LR = 106 revolutions is chosen to match the value used by the observed manufacturer

(NTN Bearings) [23]. As the radial force on the bearings is much larger than the axial force,

we get that Fe = Fradial = 1124.1N . We can now get the required rated capacity for the

bearing:

Creq = 1124.1N(1.4)(
960000rev

(1.0)(106rev)
)0.3 = 12.3kN (184)

From the NTN bearings catalogue [23], a medium load ball bearing of the appropriate size

for this shaft (13 mm diameter) can only support about 10.3 kN dynamic and 4.6 kN static

load. The dynamic rating could be achievable by increasing the size of the shaft slightly, but

the static rating is extremely low and not feasible. This analysis is what led to the selection

of sleeve bearings (or bushings).

B.5 Sleeve Bearing Friction

As this application is mostly static or at very low speeds, the bushing is submitted to

boundary lubrication [14]. An approximation of the friction coefficient was attempted using

Petroff’s equation [14]:

f =
2π2µn(d/2)

Pc
(185)

where µ is the absolute viscosity in Pa s and c is the clearance between the shaft and

bushing in mm. Absolute viscosity values were difficult to find. A conservative estimate was

made, using the Temperature-Grade-Viscosity graph provided in the Juvinall textbook [14].

The highest viscosity grade (SAE 70) was chosen, and assumed to be operating at 30 degrees

celsius. This temperature is selected as a reasonable temperature that might be found in

the bushing on a cold day (with added friction and electronics heat). This gives an absolute

viscosity of 1000 mPas, which is a relatively high value and will give a high estimate of the
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friction. For the clearance in the bushing, it was found that the ratio of the shaft radius and

clearance is generally between 500-1000, therefore a ratio of 1000 was selected as worst case

scenario [14]. The value of the friction (drag) torque Tf is then found with the following

equation [14], where F is the radial force applied on the bearing.

Tf = fF (d/2) (186)

For a sample calculation on the exterior knee shaft bearings, the bearing friction coeffi-

cient is found using Equation 185, with µ = 1000mPas, c = d/2
1000

= 0.0065mm, n = 1.60rpm

and d = 13.0mm. The actual value of pressure P must be calculated first using Equation

123. Then, the drag torque is found using Equation 186.

P =
F

dL
=

1124.1N

13.0mm× 4.0mm
× = 21.6MPa (187)

f =
2π2µn(d/2)

Pc
=

2π2 × 1Pas× (1.60/60)rps× (13.0mm/2)

21.6× 106Pa× 0.0065mm
= 2.4× 10−5 (188)

Tf = fF (d/2) = 2.4× 10−5 × 1125.1N × (13.0mm/2) = 0.18Nmm (189)

The friction does not make sense as it was found that friction coefficients for boundary

lubrication should be about 0.05-0.20 [14]. The calculated value is extremely low. This might

be due to the fact that the Petroff equation assumes no eccentricity, which would not be

the case for boundary lubrication. The rotation speed in this application is also low, which

causes the friction coefficient to be very low.

If the highest value of coefficient of friction in the range is chosen (f = 0.20), then a drag

torque of 1463 Nmm is found, which is less than 5% of the applied torque. Thus, as our

friction coefficient is likely lower, friction can be considered negligible.

C Data sheets

87



















269

m
ax

o
n 

fla
t 

m
o

to
r

269

625860 614949 625861
647696 642221 647697

12 24 48
3760 4300 4020
815 497 224
2790 3240 3020
492 536 577
15.1 9.28 4.6
3340 4300 4870
111 81.9 43.2
83.8 85.2 86.3

0.108 0.293 1.11
0.0911 0.279 1.28

30 52.5 113
318 182 84.8
1.14 1.01 0.837
9.95 8.83 9.29
832 832 832

M 1:2

 1.22 K/W
 0.843 K/W
 9.19 s
 44 s
 -40…+100°C
 +125°C

    < 12.0 N 0 mm 
  > 12.0 N 0.14 mm

 12 N
 170 N 

 8000 N
 112 N

 7
 3
 360 g

ESCON Module 50/5 455
ESCON Mod. 50/8 (HE) 456
ESCON 50/5 457
ESCON 70/10 457
DEC Module 50/5 459

0 200 400 600 800 M [mNm]
0.43 3.9 7.3 11 14 I [A]
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200 W

614949

Specifications Operating Range Comments

n [rpm] Continuous operation
In observation of above listed thermal resistance 
(lines 17 and 18) the maximum permissible wind-
ing temperature will be reached during continuous  
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

maxon Modular System Details on catalog page 36

Stock program
Standard program
Special program (on request)

Part Numbers

April 2019 edition / subject to change  maxon EC motor 

EC 60 flat  ∅60 mm, brushless, 200 Watt
Ventilated

Motor Data
Values at nominal voltage

1 Nominal voltage V
2 No load speed rpm
3 No load current mA
4 Nominal speed rpm
5 Nominal torque (max. continuous torque) mNm
6 Nominal current (max. continuous current) A
7 Stall torque1 mNm
8 Stall current A
9 Max. efficiency %

Characteristics
10 Terminal resistance phase to phase W
11 Terminal inductance phase to phase mH
12 Torque constant mNm/A
13 Speed constant rpm/V
14 Speed/torque gradient rpm/mNm
15 Mechanical time constant ms
16 Rotor inertia gcm2

 Thermal data
17 Thermal resistance housing-ambient 
18 Thermal resistance winding-housing 
19 Thermal time constant winding 
20 Thermal time constant motor 
21 Ambient temperature 
22 Max. winding temperature 
 Mechanical data (preloaded ball bearings)
23 Max. speed 6000 rpm
24 Axial play at axial load   

  
25 Radial play  preloaded
26 Max. axial load (dynamic) 
27 Max. force for press fits (static)  

(static, shaft supported)  
28 Max. radial load, 5 mm from flange 
 Other specifications
29 Number of pole pairs 
30 Number of phases 
31 Weight of motor 
 Values listed in the table are nominal.
 Connection V1 V2 (sensors, AWG 24)
 Pin 1 Hall sensor1 Hall sensor1
 Pin 2 Hall sensor 2 Hall sensor 2
 Pin 3 VHall 4.5…24 VDC Hall sensor 3
 Pin 4 Hall sensor 3 GND
 Pin 5 GND VHall 4.5…24 VDC
 Pin 6 N.C. N.C.
    V2 (Motor, AWG 14)
 Pin 1 Motor winding 1 Motor winding 1
 Pin 2 Motor winding 3 Motor winding 2
 Pin 3 Motor winding 2 Motor winding 3
 Pin 4   N.C.
 Wiring diagram for Hall sensors see p. 47
 Connector Part number
 Molex  46015-0606  43025-0600
 Molex 76829-0104 171692-0104
 Connection cable for V1
 Connection cable Universal, L = 500 mm 651900
 1Calculation does not include saturation effect (p. 57/162)

V1 with Hall sensors
V2 with Hall sensors and cables

Planetary Gearhead
∅52 mm
4 - 30 Nm
Page 367

Recommended Electronics:
Notes Page 36





MAXEON™ GEN III SOLAR CELLS

Durability Advantage

The Maxeon cell has strength and durability to survive extreme 

conditions year after year, enabling SunPower to provide superior, 

long-term performance in a broad range of applications.

• Corrosion Resistance: SunPower’s tin-copper metal system is more 

corrosion resistant compared to the porous metal paste used in 

Conventional Cells, which can crack more easily and corrode.

•  Crack Resistance: SunPower’s cells are thinner and more flexible than 

Conventional Cells. When a SunPower cell does crack, the backside 

copper metal foundation keeps the cell intact and maintains a high 

power output. When Conventional Cells crack, the cell breaks apart 

• Eco-Friendly: SunPower cells solder to lead-free components and 

are RoHS compliant. Conventional Cells often require components 

with lead.

Power Advantage

SunPower designs, manufactures, and delivers 

high-performance solar electric technology 

worldwide. SunPower™ cells produce 25-35% 

more power compared to Conventional Cells1 

with outstanding aesthetics.

Energy Advantage

SunPower panels deliver the highest energy 

per rated watt compared to a Conventional 

Panel. (Photon International, Mar 2013, out of 

151 panels tested).

• No Light-Induced Degradation = 2 - 3% 

more energy.

• 

energy at 35-40°C ambient temperature.

• Low Light and Broad Spectral Response = up 

to 1% more energy in overcast and 

low-light conditions.

SunPower’s Efficiency Advantage 
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P-type Silicon 

SunPower  
Maxeon  Gen II 

SunPower  
Maxeon Gen III  

1 As used throughout, “Conventional Cells” are silicon cells that have many thin 
metal lines on the front and 2 or 3 interconnect ribbons soldered along the 
front and back. “Conventional Panel” means a panel with 240W, 15% efficiency
and approximately 1.6 m  made with Conventional Cells.

with typically a significant loss of power.No Temperature Coefficient = 1 - 2% more

2
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MAXEON™ GEN III SOLAR CELLS

Spectral Response

References
SunPower: NREL data, commissioned by SPWR
Conventional: Progress in Photovoltaics: Research and Applicati  
version 36 18(5), (2010) 46–352

Cell Physical Characteristics

Wafer:

Design:

Front:

Back: 

Cell Thickness:

Monocrystalline silicon

All back contact

Tin-coated, copper metal grid

150μm +/- 30μm

Bond pad area dimensions are 5.4mm x 3.0mm
.

Positive/Negative pole bond pad sides have “+/-” indicators on leftmost and  
rightmost bond pads
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SunPower

Conventional

Solar Spectrum, ASTM G173-03

Packaging

Cells are packed in boxes of 1500 each; grouped in 10 shrink-wrapped 

stacks of 150 with interleaving. 24 boxes are packed in a water-resistant

 “Master Carton” containing 36,000 cells suitable for air transport. 

Production Quality

Soft handling procedures to reduce breakage and crack formation

100% cell performance testing and visual inspection

Purchase Terms

Customers shall not reverse engineer, disassemble or analyze the Solar Cells 

or any prototype, process, product, or other item that embodies

Information of SunPower.  Customers shall not cause or allow any inspection, 

analysis, or characterization of any properties (whether mechanical, structural, 

chemical, electrical, or otherwise) of the Solar Cells, whether by itself or by a 

third party.

Customer agrees that it will not transfer (whether by sale, loan, gift, or other 

conveyance) the Solar Cells from its possession. 

SunPower solar cells are provided “AS IS” without warranty.   

Full terms and conditions are in the Cell Purchase Agreement 

Positive Electrical Grounding

If cell voltage is below frame ground the cell power output will be reduced. 

Therefore, modules and systems produced using these cells should be con-

figured as “positive ground systems.” If this creates a problem, please consult 

with SunPower.

Interconnect Tab and Process Recommendations

SunPower recommends customers use SunPower’s patented tin-plated copper 

strain-relieved interconnect tabs, which can be purchased from SunPower. These 

interconnects are easily solderable and compatible with lead free processing.

Our patented interconnect tabs are packaged in boxes of 3600 or 36,000 each.

http://us.sunpower.com/about/sunpower-technology/patents/

sunpower.com 
Document #507816 Rev F / A4_EN

© 2017 SunPower Corporation.  All Rights Reserved.  SUNPOWER, the SUNPOWER logo, MAXEON, and MORE ENERGY. FOR LIFE. are trademarks or registered 
trademarks of SunPower Corporation in the U.S. and other countries as well. Specifications included in this datasheet are subject to change without notice.

 

 

 

 

 

 

Electrical Characteristics of a typical Maxeon Gen III Cell 

At Standard Test Conditions (STC) 
STC: 1000W/m2, AM 1.5G and cell temp 25ºC  

 Pmpp 

(Wp) 

Eff. 

(%) 

Vmpp 

(V) 

Impp 

(A) 

Voc 

(V) 

Isc 

(A)  

Ultra Peak 

Performance 
3.72 24.3  0.632 5.89 0.730 6.18 

Ultra Premium 

Performance 
3.62 23.7  0.621 5.84 0.721 6.15 

Ultra High

Performance 
3.54 23.1  0.612 5.79 0.713 6.11 

Electrical parameters are nominal values. 

Temp Coefficients in SunPower Panels: Voltage: -1.74mV/ºC, Current: 2.9mA/ºC,
         Power: -0.29%/ºC

. 

Uniform, black antireflection coating

ISO 9001:2015 certified

Metal finger pitch between positive and negative fingers is 471um

Cell
Bin

Me1 

Le1

Ke1

5.4

Cell Area: Approximately 153cm2

Cell Weight: Approximately 6.5grams

Tabs weigh approximately 0.3 grams.

3.0
5.4

























D Code

D.1 Power Consumption

The power consumption is more accurately calculated using the MATLAB script below.

D.1.1 Power Consumption Script

%% Var iab l e s

clc ; clear ;

m1 = 0 . 8 3 6 ;

m2 = 0 . 5 3 2 ;

N = 160 ;

f = 10 ;

r1 = 100 ;

r2 = 50 ;

r3 = 300 ;

ed = 50 ;

dd =0;

ddd=0;

edd=0;

alpha = 6 8 . 5 8 ;

l eng th beg in = 124 ;

l ength end = 241 ; % taken from ge t max ex t ens ion .m

p r e c i s i o n = 0 . 0 0 1 ;

e = l eng th beg in : p r e c i s i o n : l ength end ;

a r r a y s i z e = ( length end−l e ng th beg in ) / p r e c i s i o n +1;

d = 210 ;

gearRat io =100;

Torque1 = zeros (3 , a r r a y s i z e ) ;

Torque2 = zeros (3 , a r r a y s i z e ) ;

Torque1 spr ing = zeros (3 , a r r a y s i z e ) ;

Torque2 spr ing = zeros (3 , a r r a y s i z e ) ;

sp r ing1 = zeros (3 , a r r a y s i z e ) ;

sp r ing2 = zeros (3 , a r r a y s i z e ) ;
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theta = zeros ( a r r a y s i z e , 1 ) ;

thetad = zeros ( a r r a y s i z e , 1 ) ;

thetadd =zeros ( a r r a y s i z e , 1 ) ;

phi = zeros ( a r r a y s i z e , 1 ) ;

phid = zeros ( a r r a y s i z e , 1 ) ;

phidd = zeros ( a r r a y s i z e , 1 ) ;

psy = zeros ( a r r a y s i z e , 1 ) ;

%% Get Torque Phase 1

for i = 1 : 1 : a r r a y s i z e

[ theta ( i ) , phi ( i ) , psy ( i ) , R] = l e g a n g l e s ( r1 , r2 , r3 , alpha , d , e (

i ) ) ;

[ thetad ( i ) , phid ( i ) ] = l e g a n g l e s d o t ( r1 ,R, theta ( i ) , phi ( i ) ,dd ,

ed ) ;

[ thetadd ( i ) , phidd ( i ) ] = l e g a n g u l a r a c c e l e r a t i o n ( r1 ,R, theta ( i

) , thetad ( i ) , phi ( i ) , phid ( i ) , ddd , edd ) ;

[ Torque1 (1 , i ) , Torque2 (1 , i ) ] = Dynamic Equation (m1,m2,R/1000 , r1

/1000 , theta ( i ) , phi ( i ) , thetadd ( i ) , phidd ( i ) , N, f ) ;

[ Torque1 spr ing (1 , i ) , Torque2 spr ing (1 , i ) ] =

Dynamic Equation Springs (m1,m2,R/1000 , r1 /1000 , theta ( i ) ,

phi ( i ) , thetadd ( i ) , phidd ( i ) , N, f ) ;

[ sp r ing1 (1 , i ) , sp r ing2 (1 , i ) ] = Spring ( theta ( i ) , phi ( i ) ) ;

end

%% Get Torque Phase 2 − Phi in c r ea s e s

for i = 1 : 1 : a r r a y s i z e

[ Torque1 (2 , i ) , Torque2 (2 , i ) ] = Dynamic Equation (m1,m2,R/1000 , r1

/1000 , theta (1 ) , phi ( i ) , 0 , 0 , 0 ,0) ;

[ Torque1 spr ing (2 , i ) , Torque2 spr ing (2 , i ) ] =

Dynamic Equation Springs (m1,m2,R/1000 , r1 /1000 , theta (1 ) ,

phi ( i ) , 0 , 0 , 0 ,0) ;

[ sp r ing1 (2 , i ) , sp r ing2 (2 , i ) ] = Spring ( theta (1 ) , phi ( i ) ) ;
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end

%% Get Torque Phase 3 − Theta Decreases

for i = 1 : 1 : a r r a y s i z e

[ Torque1 (3 , i ) , Torque2 (3 , i ) ] = Dynamic Equation (m1,m2,R/1000 , r1

/1000 , theta ( i ) , phi ( a r r a y s i z e ) ,0 , 0 , 0 ,0 ) ;

[ Torque1 spr ing (3 , i ) , Torque2 spr ing (3 , i ) ] =

Dynamic Equation Springs (m1,m2,R/1000 , r1 /1000 , theta ( i ) ,

phi ( a r r a y s i z e ) ,0 , 0 , 0 ,0 ) ;

[ sp r ing1 (3 , i ) , sp r ing2 (3 , i ) ] = Spring ( theta ( i ) , phi ( a r r a y s i z e )

) ;

end

%% Get Harmonic Drive and Motor Specs

Max Torque1 = max( [max(abs ( Torque1 ( 1 , : ) ) ) ,max(abs ( Torque1 ( 2 , : ) ) ) ,

max(abs ( Torque1 ( 3 , : ) ) ) ] ) ;

Max Torque2 = max( [max(abs ( Torque2 ( 1 , : ) ) ) ,max(abs ( Torque2 ( 2 , : ) ) ) ,

max(abs ( Torque2 ( 3 , : ) ) ) ] ) ;

Max Torque1 spring = max( [max(abs ( Torque1 spr ing ( 1 , : ) ) ) ,max(abs (

Torque1 spr ing ( 2 , : ) ) ) , max(abs ( Torque1 spr ing ( 3 , : ) ) ) ] ) ;

Max Torque2 spring = max( [max(abs ( Torque2 spr ing ( 1 , : ) ) ) ,max(abs (

Torque2 spr ing ( 2 , : ) ) ) ,max(abs ( Torque2 spr ing ( 3 , : ) ) ) ] ) ;

Min Torque1 spring = min ( [min(abs ( Torque1 spr ing ( 1 , : ) ) ) ,min(abs (

Torque1 spr ing ( 2 , : ) ) ) , min(abs ( Torque1 spr ing ( 3 , : ) ) ) ] ) ;

Min Torque2 spring = min ( [min(abs ( Torque2 spr ing ( 1 , : ) ) ) ,min(abs (

Torque2 spr ing ( 2 , : ) ) ) ,min(abs ( Torque2 spr ing ( 3 , : ) ) ) ] ) ;

Min thetad = min(abs ( thetad ) ) ;

Min phid = min(abs ( phid ) ) ;

HdSpecs theta = ge t hd spec s ( Max Torque1 spring ) ;

HdSpecs phi = ge t hd spe c s ( Max Torque2 spring ) ;
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% ge t h d i n pu t s ( ) g i v e s r e s u l t s in mNm and rpm

[ Max Torque1 motor , Min thetad motor ] = ge t hd input s ( Min thetad ,

Max Torque1 spring , HdSpecs theta (3 ) , gearRat io ) ;

[ Max Torque2 motor , Min phid motor ] = ge t hd input s ( Min phid ,

Max Torque2 spring , HdSpecs phi (3 ) , gearRat io ) ;

MotorSpecs theta = get motor spec s ( Max Torque1 motor ) ; %

ge t mo to r spec s t a k e s input in mNm

MotorSpecs phi = get motor spec s ( Max Torque2 motor ) ;

%% Phase Time

Phase Time = [ ( length end−l e ng th beg in ) /ed , (max( phi )−min( phi ) ) /(

mean(abs ( phid ) ) ∗180/ pi ) , (max( theta )−min( theta ) ) /(mean(abs (

thetad ) ) ∗180/ pi ) ] ;

Step Time = Phase Time . / a r r a y s i z e ;

%% Jou le s Consumed

Joules Consumed = [ 0 , 0 , 0 ] ;

Coulombs Consumed = [ 0 , 0 , 0 ] ;

thetad mean = mean(abs ( thetad ) ) ;

phid mean = mean(abs ( phid ) ) ;

for i = 1 : 1 : a r r a y s i z e

%% Get Jou l e s Phase 1

[ torque motor theta , rpm motor theta ] = ge t hd input s (abs (

thetad ( i ) ) ,abs ( Torque1 spr ing (1 , i ) ) , HdSpecs theta (3 ) ,

gearRat io ) ;

[ torque motor phi , rpm motor phi ] = ge t hd input s (abs ( phid ( i ) ) ,

abs ( Torque2 spr ing (1 , i ) ) , HdSpecs phi (3 ) , gearRat io ) ;

[ j o u l e s t h e t a , coulombstheta ] = get motor input s (

torque motor theta , rpm motor theta , MotorSpecs theta (6 ) ,

MotorSpecs theta (7 ) , MotorSpecs theta (5 ) ) ;

[ j ou l e sp h i , coulombsphi ] = get motor input s ( torque motor phi ,

rpm motor phi , MotorSpecs phi (6 ) , MotorSpecs phi (7 ) ,
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MotorSpecs phi (5 ) ) ;

Coulombs Consumed (1) = Coulombs Consumed (1) + ( coulombstheta+

coulombsphi ) ∗Step Time (1) ;

Joules Consumed (1) = Joules Consumed (1) + ( j o u l e s t h e t a+

j o u l e s p h i ) ∗Step Time (1) ;

%% Get Jou l e s Phase 2

[ torque motor theta , rpm motor theta ] = ge t hd input s (0 , abs (

Torque1 spr ing (2 , i ) ) , HdSpecs theta (3 ) , gearRat io ) ;

[ torque motor phi , rpm motor phi ] = ge t hd input s (abs ( phid mean

) ,abs ( Torque2 spr ing (2 , i ) ) , HdSpecs phi (3 ) , gearRat io ) ;

[ j o u l e s t h e t a , coulombstheta ] = get motor input s (

torque motor theta , rpm motor theta , MotorSpecs theta (6 ) ,

MotorSpecs theta (7 ) , MotorSpecs theta (5 ) ) ;

[ j ou l e sp h i , coulombsphi ] = get motor input s ( torque motor phi ,

rpm motor phi , MotorSpecs phi (6 ) , MotorSpecs phi (7 ) ,

MotorSpecs phi (5 ) ) ;

Coulombs Consumed (2) = Coulombs Consumed (2) + ( coulombstheta+

coulombsphi ) ∗Step Time (2) ;

Joules Consumed (2) = Joules Consumed (2) + ( j o u l e s t h e t a+

j o u l e s p h i ) ∗Step Time (2) ;

%% Get Jou l e s Phase 3

[ torque motor theta , rpm motor theta ] = ge t hd input s (abs (

thetad mean ) ,abs ( Torque1 spr ing (3 , i ) ) , HdSpecs theta (3 ) ,

gearRat io ) ;

[ torque motor phi , rpm motor phi ] = ge t hd input s (0 , abs (

Torque2 spr ing (3 , i ) ) , HdSpecs phi (3 ) , gearRat io ) ;

[ j o u l e s t h e t a , coulombstheta ] = get motor input s (

torque motor theta , rpm motor theta , MotorSpecs theta (6 ) ,

MotorSpecs theta (7 ) , MotorSpecs theta (5 ) ) ;

[ j ou l e sp h i , coulombsphi ] = get motor input s ( torque motor phi ,

rpm motor phi , MotorSpecs phi (6 ) , MotorSpecs phi (7 ) ,

MotorSpecs phi (5 ) ) ;
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Coulombs Consumed (3) = Coulombs Consumed (3) + ( coulombstheta+

coulombsphi ) ∗Step Time (3) ;

Joules Consumed (3) = Joules Consumed (3) + ( j o u l e s t h e t a+

j o u l e s p h i ) ∗Step Time (3) ;

end

%% Amps and Watts

Amps phase = [ Coulombs Consumed (1) /Phase Time (1 ) , Coulombs Consumed

(2) /Phase Time (2 ) , Coulombs Consumed (3) /Phase Time (3 ) ] ;

Amps Consumed = (sum( Coulombs Consumed ) ∗5) /( Phase Time (1 ) +

Phase Time (2 ) ∗5 + Phase Time (3 ) ∗5) ;

Watts Consumed Phase = [ Joules Consumed (1) /Phase Time (1 ) ,

Joules Consumed (2) /Phase Time (2 ) , Joules Consumed (3) /Phase Time

(3 ) ] ;

Watts Consumed = (sum( Joules Consumed ) ∗5) /( Phase Time (1 ) +

Phase Time (2 )∗5+Phase Time (3 ) ∗5) ;

fpr intf ( ’ Average Current ( no other e l e c t r o n i c s ) : %fA\n ’ ,

Amps Consumed) ;

current other components = 2 . 1 3 3 ;

Amps Consumed = Amps Consumed + current other components ;

fpr intf ( ’ Average Current ( with other e l e c t r o n i c s ) : %fA\n ’ ,

Amps Consumed) ;

a h p e r c e l l = 3 . 4 ;

v p e r c e l l = 3 . 6 ;

k g p e r c e l l = 0 . 0 5 ;

hours = 2 ;

vo l tage = 48 ;

c e l l s s e r i e s = ce i l ( vo l t age / v p e r c e l l ) ;

c e l l s p a r a l l e l = ce i l (Amps Consumed∗hours / a h p e r c e l l ) ;

c e l l s t o t a l = c e l l s p a r a l l e l ∗ c e l l s s e r i e s ;

k g t o t a l = c e l l s t o t a l ∗ k g p e r c e l l ;
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fpr intf ( ’Number o f C e l l s : %f \n ’ , c e l l s t o t a l ) ;

fpr intf ( ’ Weight o f bat te ry : %fkg \n ’ , k g t o t a l ) ;

D.1.2 Harmonic Drive Inputs Script

function [ torque motor , rpm motor ] = ge t hd input s ( speed output ,

torque output , to rque rated , g e a r r a t i o )

%% INPUTS

% speed at output o f harmonic d r i v e ( rad/ s )

% torque at output o f harmonic d r i v e (Nm)

% rated torque o f harmonic d r i v e (Nm)

% gear r a t i o o f harmonic d r i v e (100 :1)

%% OUTPUTS

% torque at output o f motor/ input o f harmonic d r i v e (mNm)

% speed at output o f motor/ input o f harmonic d r i v e (rpm)

rpm output = speed output ∗30/ pi ;

rpm motor = rpm output∗ g e a r r a t i o ;

%% SPEED EFFICIENCY

e t a r = (4.848∗(10ˆ(−9) ) ) ∗( rpm motor ˆ2) + (−5.879∗(10ˆ(−5)

) ) ∗( rpm motor ) + 0 . 8 3 6 7 ;

i f e t a r > 0 .81

e t a r = 0 . 8 1 ;

e l s e i f e t a r < 0 .69

e t a r = 0 . 6 9 ;

end

%% TORQUE EFFICIENCY

alpha = torque output / to rque ra t ed ;

i f alpha > 1

alpha = 1 ;

end

k e = (−1.481∗( alpha ˆ4) ) +(4.312∗( alpha ˆ3) ) −(5.013∗( alpha ˆ2) )

+(3.159∗ alpha ) −0.02076;
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i f k e < 0 .3

k e = 0 . 3 ;

end

%% MOTOR TORQUE

eta HD = e t a r ∗ k e ;

torque motor = torque output ∗1000/( g e a r r a t i o ∗eta HD ) ;

end

D.1.3 Motor Inputs Script

function [ power motor in , current motor ] = get motor input s (

torque motor , rpm motor , torque constant , speed constant ,

r e s i s t a n c e m o t o r )

%% INPUTS:

% speed at output o f motor (rpm)

% torque at output o f motor (mNm)

% torque cons tant o f motor (mNm/A)

% speed cons tant o f motor (rpm/V)

% r e s i s t a n c e o f the motor (Ohms)

%% OUTPUTS:

% e l e c t r i c a l power in t o motor (W)

% current in t o motor (A)

U = (1/ speed cons tant ) ∗ ( ( (30000∗ r e s i s t a n c e m o t o r ∗
torque motor ) /( pi∗ to rque cons tant ˆ2) )+rpm motor ) ;

a = r e s i s t a n c e m o t o r ;

b = −U;

c = ( pi∗rpm motor∗ torque motor ) /(30000) ;

I upper = (−b+sqrt ( ( bˆ2)−(4∗a∗c ) ) ) /(2∗ a ) ;

I l o w e r = (−b−sqrt ( ( bˆ2)−(4∗a∗c ) ) ) /(2∗ a ) ;

% When speed i s 0 , I l owe r = 0

i f I l o w e r <= 0

current motor = I upper ;

else
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current motor = I l o w e r ;

end

power motor in = U ∗ current motor ;

end
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