How Big is Canada, Really?

Note: Jupyter Notebook downloadable here.

Canada is the second largest country in the world by total area, and fourth largest by land area, but most of it is virtually uninhabited. In 2016, 66% of the Canadian population lived within 100km of the US border. I've been curious for a long while now, how big is Canada really, if we only include areas that has a certain population density or higher?

A naive approach would to go to every country's own statistics/census website, wrestle with their chosen data accessing and formatting patterns. A slightly smarter approach is to let someone else do it for us, and use their results. Luckily, the Socioeconomic Data and Applications Center has done this since 1995.

I originally downloaded their Population Density dataset v4.11, which contains ASCII and TIFF files of data up to a resolution of 30 arc-second. Unfortunately, I couldn't think of a convenient way of figuring out which pixels belong to each country. A much easier approach is to use the 'Administrative Unit Center Points with Population Estimates' dataset, which gives, per administrative unit in a given country, its population, area, density, and more, which makes our job easy as pie. There's definitely some lost resolution, since a gigantic admin unit could hypothetically have everyone concentrated in a single square kilometer, and we'd never know. Something to look out for when we start wrangling the data.

Step 1: Download Data

I went over to the link above (or here, same link), created an account, selected Global/Regional as the Geography, Comma Separated Value as the file format, and then ticked the Global box, which contains a single CSV for the world minus the US, then four separate CSV for the latter. While ticking the per-continent boxes was an option, I'm here to make unbased claims against Mapleland, not parallelize my work or be considerate of the hardware of others. According to Jeff, it takes about double the size of a CSV file to open it in Pandas; since the largest file is just over 3GB, I didn't think it would cause any issues.

I also downloaded the documentation, since it describes the column titles used below.

Step 2: Load, Trim, Permute, and Save

Next step was pretty straightforward; load each CSV, remove all columns but the country, density, and area (I kept population too for maybe futzing around later), and save it all to a CSV for probably faster loading if I ever want to open these again.


import pandas as pd
import numpy as np
import os
import glob

curr_dir = os.getcwd()

files = glob.glob(curr_dir + '/data/unprocessed/*.csv')
combined_csv = pd.DataFrame()

for file in files:
    df = pd.read_csv(file)
    df = df[['COUNTRYNM', 'LAND_A_KM', 'UN_2020_E', 'UN_2020_DS']]
    combined_csv = pd.concat([combined_csv, df], ignore_index=True)

combined_csv.to_csv(curr_dir + '/data/processed/data.csv', index=False) # creative naming, I know

That trimmed the CSV file down to a much more manageable 700MB. Let's load it back up and make sure we're in the right universe. UN_2020_E is population, UN_2020_DS is population density.


processed_dir = curr_dir + '/data/processed/data.csv'
world = pd.read_csv(processed_dir)

canada = world.loc[world['COUNTRYNM'] == 'Canada']
print("Some basic stats to make sure we're in the right ballbark:\n" + canada[['LAND_A_KM', 'UN_2020_E']].sum().astype(int).to_string())
print("Largest countries by area:")
display(world.nlargest(10, 'LAND_A_KM'))

    Some basic stats to make sure we're in the right ballbark:
    LAND_A_KM     9212798
    UN_2020_E    37598321
    Largest countries by area:

COUNTRYNM LAND_A_KM UN_2020_E UN_2020_DS
791023 Russian Federation 767641.976601 32930 0.042898
930603 Russian Federation 751158.134576 15544 0.020693
1176779 Russian Federation 621181.130812 557483 0.897456
2050398 Russian Federation 495621.691721 1633567 3.295996
1176744 Canada 474935.493596 0 0.000000
401694 Libya 422834.864844 57232 0.135353
921342 Saudi Arabia 389751.465939 1397411 3.585389
984503 Australia 329121.452826 363 0.001103
1375964 Russian Federation 313387.791273 4240 0.013530
2257782 Mali 294178.507917 55773 0.189589

Population of 37 million and land area of 9 million? Seems about right.

Unfortunately, those administrative units are absolutely massive. The Canadian one isn't too much trouble, since the population is zero, and there's no way to distribute zero people that will influence the density of any square kilimeter of land within it.

The others are more problematic. The fourth largest, for example, contains 1.6 million people, but with an average density of 3.3 people per square kilometer, if our threshold were set to, for example, the average population density of the world (about 50 per sqkm), then the entire area would be ignored. Not much I can think about off the top of my head to fix this, so we'll just have to keep it in mind when looking at the results.

World map with large administrative units visible

Smaller version of the 17GB TIFF from the Population Density dataset v4.11, with some very large administrative units visible.

Step 3: How Dense is Dense Enough?

What density is enough to reasonably consider an administrative unit populated? There's a few approaches we can take.

We can trim all units with a density below the global average of 50 people per square kilometer above; this'll hurt Canada's area quite a bit, but that's what we're here for.

We can also trim all units with a density below the average density in Canadian farmland. Statistics Canada lists 160 155 748 acres of farmland in Canada in 2011, or 648 127sqkm. With about 241 500 jobs in primary agriculture, that comes out to 2.68 people per square kilometer, significantly lower than the global average, and a generous threshold to let Canada keep some area in the upcoming smackdown.

We can look at the least dense US state and use that as our threshold. Why? No clue, seems like fun. Wikipedia to the rescue, which reports Alaska as our lucky winner with an average population density of 0.5 people per sqkm. I was originally going to exclude Alaska, since I figured it would be ridiculously low, but considering the second lowest, Wyoming, has a density of 2.3 people per sqkm, which is about the same as for the average Canadian farm, looks like we're using our friend up north and being even more gentle with Canada's new area.

Step 4: Shrink Canada


world_thresh_alaska = world.loc[world['UN_2020_DS'] >= 0.5].drop('UN_2020_DS', axis=1).groupby('COUNTRYNM').sum().astype(int)
world_thresh_farming = world.loc[world['UN_2020_DS'] >= 2.7].drop('UN_2020_DS', axis=1).groupby('COUNTRYNM').sum().astype(int)
world_thresh_average = world.loc[world['UN_2020_DS'] >= 50].drop('UN_2020_DS', axis=1).groupby('COUNTRYNM').sum().astype(int)
world_unthresh = world.drop('UN_2020_DS', axis=1).groupby('COUNTRYNM').sum().astype(int)

thresholded_areas = pd.concat([world_unthresh['LAND_A_KM'],
                               world_thresh_alaska['LAND_A_KM'],
                               world_thresh_farming['LAND_A_KM'],
                               world_thresh_average['LAND_A_KM']],
                              axis=1,
                              keys = ['True Area', 'Alaska Threshold', 'Farming Threshold', 'Average Threshold'])

thresholded_populations = pd.concat([world_unthresh['UN_2020_E'],
                                     world_thresh_alaska['UN_2020_E'],
                                     world_thresh_farming['UN_2020_E'],
                                     world_thresh_average['UN_2020_E']],
                                    axis=1,
                                    keys = ['True Population', 'Alaska Threshold', 'Farming Threshold', 'Average Threshold'])
display(thresholded_areas)

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
Afghanistan 640733 640660.0 574946.0 153707.0
Aland Islands 1446 1446.0 1446.0 12.0
Albania 28195 28195.0 26698.0 8370.0
Algeria 2315206 1056997.0 482377.0 127084.0
American Samoa 223 223.0 218.0 135.0
... ... ... ... ...
Wallis and Futuna Islands 156 156.0 156.0 105.0
Western Sahara 268479 14566.0 974.0 974.0
Yemen 454789 342455.0 290358.0 98639.0
Zambia 742776 742776.0 722223.0 67254.0
Zimbabwe 388537 388537.0 388537.0 70531.0

248 rows × 4 columns

While I could print out the entire Dataframe, it's pretty long and would cause some serious scrolling cramps, so I've hidden it down at the bottom.

Coutries who do not at all meet the threshold for any of their administrative units will return a NaN value, as demonstrated below for Belize, which has densities above that of both the Alaska and Farming thresholds, but not the world average one of 50. We'll fill those up with zeros instead.


display(thresholded_areas[thresholded_areas['Average Threshold'].isnull()])
display(world.loc[world['COUNTRYNM'] == 'Belize'])

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
Belize 21827 21827.0 21827.0 NaN
Bouvet Island 77 NaN NaN NaN
British Indian Ocean Territory 64 NaN NaN NaN
French Southern Territories 6939 NaN NaN NaN
Heard Island and McDonald Islands 108 NaN NaN NaN
Niue 268 268.0 144.0 NaN
Pitcairn 54 54.0 54.0 NaN
South Georgia and the South Sandwich Islands 1605 NaN NaN NaN
Spratly Islands 1 NaN NaN NaN
Svalbard and Jan Mayen Islands 25632 NaN NaN NaN
United States Minor Outlying Islands 41 NaN NaN NaN

COUNTRYNM LAND_A_KM UN_2020_E UN_2020_DS
142757 Belize 2610.161373 121846 46.681405
849789 Belize 5637.625207 98046 17.391365
853681 Belize 2200.283569 43919 19.960609
1145388 Belize 5068.117741 37226 7.345133
1851635 Belize 4645.692829 49673 10.692270
1971838 Belize 1665.167539 47171 28.328080


# needed np.Nan instead of 'NaN', as per https://stackoverflow.com/questions/48956789/converting-nan-in-dataframe-to-zero
thresholded_areas = thresholded_areas.replace(np.NaN, 0).astype(int)
thresholded_populations = thresholded_populations.replace(np.NaN, 0).astype(int)

Step 5: Get Our Bearings

The entry I'm really here for:


thresholded_areas.loc['Canada']

    True Area            9212798
    Alaska Threshold      710850
    Farming Threshold     329660
    Average Threshold      35654
    Name: Canada, dtype: int64

Alaska's population density of 0.5 people per square kilometer is so low that, were it a country/dependency, it would be the fourth least dense in the world after Greenland, Svalbard and Jan Mayen, and the Falkland Islands, and four times less dense than the next least dense, Mongolia. Even with such a generous threshold, Canada's area plummets by a factor of 10 down to 700 000 square kilometers; we're left with the provinces of Alberta and Nova Scotia, or equivalently, Texas or half of Alaska. That statistic from above, that 66% of Canadians live within 100 kilometers of the border, comes out to about 900 000 square kilometers if we assume the US-Canadian border is a straight line; we're already smaller then that.

If we're slightly less polite, we can use a density threshold which matches that of a typically Canadian farm, which cuts our area in half again down to 320 000 square kilometers, so less than Newfoundland and Labrador, or New Mexico.

Finally, with a density threshold equal to the average population density over the entire landmass of the world, Canada's area disappears into thin air at 35 000 square kilometers, a measly 0.4% of the original area. We have become the Netherlands. Or the New York metropolitan area three times (but with about half the population!)

Pitting Canada against itself and other un-harried nations is perhaps a little unfair, so lets see if Canada loses its number 2 spot when all countries are thresholded.

Step 6: Bully Canada

First, lets find out how many countries are larger than Canada when using our very generous Alaskan threshold.


larger_than_canada_alaska = thresholded_areas.loc[thresholded_areas['Alaska Threshold'] >= thresholded_areas.loc['Canada']['Alaska Threshold']].sort_values('Alaska Threshold', ascending=False)
print("Number of countries larger than Canada: ", larger_than_canada_alaska.shape[0] - 1)
display(larger_than_canada_alaska)

    Number of countries larger than Canada:  30

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
Russian Federation 16278876 7968894 4481281 251483
China 9247148 6921096 5851780 3303063
Brazil 8432161 4741899 2290227 121789
United States of America 9090181 3540041 2460345 488234
India 3129067 3122099 3080558 2780553
Kazakhstan 2644303 2432662 844971 76109
Argentina 2747226 2304871 1397748 72583
Democratic Republic of the Congo 2303597 2204141 2204141 314287
Saudi Arabia 1916976 1902485 1446169 89285
Indonesia 1889536 1889536 1816442 771227
Sudan 1863760 1734043 1408717 199263
Iran (Islamic Republic of) 1617546 1617546 1491731 369970
Mexico 1950037 1286567 972990 182816
Angola 1254203 1156652 826993 45316
Peru 1284970 1135031 670865 76305
Ethiopia 1131068 1131068 1123176 499744
Chad 1274574 1060405 698674 67956
Algeria 2315206 1056997 482377 127084
Colombia 1132589 1031894 672204 150279
Bolivia (Plurinational State of) 1061973 947005 433018 25398
Libya 1622156 917323 229238 32651
Nigeria 907439 907439 907439 775094
United Republic of Tanzania 886204 867286 756302 284147
Pakistan 861726 861726 822778 418093
Turkey 770596 770596 759889 280477
Mozambique 778180 770118 679223 174677
Niger 1189891 766295 381213 148263
Zambia 742776 742776 722223 67254
Venezuela (Bolivarian Republic of) 905593 742675 515715 125415
Mali 1253879 714553 534839 72997
Canada 9212798 710850 329660 35654

Such a small threshold, and yet here we are, already off the podium and forgotten. Have you ever thought to yourself "Wow, Zambia is such a large country"? Nope, neither have I! If we look at countries by true area, we're now the 40th largest. Lets make it worse.


larger_than_canada_farming = thresholded_areas.loc[thresholded_areas['Farming Threshold'] >= thresholded_areas.loc['Canada']['Farming Threshold']].sort_values('Farming Threshold', ascending=False)
print("Number of countries larger than Canada: ", larger_than_canada_farming.shape[0] - 1)
display(larger_than_canada_farming)

    Number of countries larger than Canada:  47

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
China 9247148 6921096 5851780 3303063
Russian Federation 16278876 7968894 4481281 251483
India 3129067 3122099 3080558 2780553
United States of America 9090181 3540041 2460345 488234
Brazil 8432161 4741899 2290227 121789
Democratic Republic of the Congo 2303597 2204141 2204141 314287
Indonesia 1889536 1889536 1816442 771227
Iran (Islamic Republic of) 1617546 1617546 1491731 369970
Saudi Arabia 1916976 1902485 1446169 89285
Sudan 1863760 1734043 1408717 199263
Argentina 2747226 2304871 1397748 72583
Ethiopia 1131068 1131068 1123176 499744
Mexico 1950037 1286567 972990 182816
Nigeria 907439 907439 907439 775094
Kazakhstan 2644303 2432662 844971 76109
Angola 1254203 1156652 826993 45316
Pakistan 861726 861726 822778 418093
Turkey 770596 770596 759889 280477
United Republic of Tanzania 886204 867286 756302 284147
Zambia 742776 742776 722223 67254
Chad 1274574 1060405 698674 67956
Mozambique 778180 770118 679223 174677
Colombia 1132589 1031894 672204 150279
Peru 1284970 1135031 670865 76305
Myanmar 667138 657212 645275 293700
Somalia 636702 636702 625599 35632
Ukraine 586209 586138 586138 113637
Madagascar 590336 590336 583032 122019
Afghanistan 640733 640660 574946 153707
South Sudan 624914 624914 553458 45449
France 546119 545917 535035 209286
Mali 1253879 714553 534839 72997
Venezuela (Bolivarian Republic of) 905593 742675 515715 125415
Thailand 511713 511406 511406 354150
Algeria 2315206 1056997 482377 127084
Cameroon 466459 466459 466459 92290
Turkmenistan 465731 465731 465731 142
Spain 504716 503497 448505 113906
Kenya 583503 539774 448287 143914
Bolivia (Plurinational State of) 1061973 947005 433018 25398
Uzbekistan 428650 428650 428650 129727
Zimbabwe 388537 388537 388537 70531
Niger 1189891 766295 381213 148263
Japan 370379 370371 368386 236177
Papua New Guinea 462697 462697 353040 32723
Germany 353564 349758 349758 264365
Chile 727775 529386 348504 41203
Canada 9212798 710850 329660 35654

Woohoo, even smaller! According to Google Maps, you can drive across Germany (from Flensburg to Garmisch-Partenkirchen) in about 11 hours. When I moved from Winnipeg to Ottawa for university, it took over twice that. We're now a little smaller than Germany as well, the 63rd largest country in the (unthresholded) world. Finally, the death blow:


larger_than_canada_average = thresholded_areas.loc[thresholded_areas['Average Threshold'] >= thresholded_areas.loc['Canada']['Average Threshold']].sort_values('Average Threshold', ascending=False)
print("Number of countries larger than Canada: ", larger_than_canada_average.shape[0] - 1)
print("Number of countries in total: ", thresholded_areas.shape[0])
display(larger_than_canada_average)

    Number of countries larger than Canada:  79
    Number of countries in total:  248

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
China 9247148 6921096 5851780 3303063
India 3129067 3122099 3080558 2780553
Nigeria 907439 907439 907439 775094
Indonesia 1889536 1889536 1816442 771227
Ethiopia 1131068 1131068 1123176 499744
... ... ... ... ...
Chile 727775 529386 348504 41203
Sierra Leone 72663 72663 72663 39086
Czech Republic 78145 77728 76346 38868
Honduras 112068 107212 97585 37002
Canada 9212798 710850 329660 35654

80 rows × 4 columns

Excellent, we've surpassed the default number of rows that show in JupyterLab. We're now smaller than Switzerland at its true size, and sandwiched between Guinea-Bissau and Moldova to take the 139th (non-thresholded) largest country award.

Map from freeworldmaps.net

It's so tiny you absolutely need a giant red circle to help you find it. Want to point to Guinea-Bissau on a map? You can't, because your finger is too big and will crush it, as well as some of the surrounding countries.

Guinea Bissau

Observe the smolness of the arrow. That might as well be pointing to Canada.

Pathetic meme from Simpsons

I put the full table at the bottom of this document for your perusing pleasure.

Step 7: Conclusions

What have we learned? Probably nothing, since many administrative units are absolutely massive with not-insignificant populations that could hypothetically contribute much needed square kilometers. If we're willing to forego any sense of critical thinking, we can safely conclude that Canada is actually a tiny country, at best the 30th largest, at worst a third of the way down the chain. I personally like the farming metric, as it (very loosely) represents what a low-density-but-inhabited sedentary country may look like. Next time someone comments on how large Canada is, feel free to correct them and assert its 47th-iness.

Appendices: Full Dataframe

Here's the full dataframe containing areas at the various thresholds for all countries


print("Full dataframe:")
with pd.option_context('display.max_rows', None):
    display(thresholded_areas)

print("Countries larger than Canada using average threshold:")
with pd.option_context('display.max_rows', None):
    display(larger_than_canada_average)

    Full dataframe:

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
Afghanistan 640733 640660 574946 153707
Aland Islands 1446 1446 1446 12
Albania 28195 28195 26698 8370
Algeria 2315206 1056997 482377 127084
American Samoa 223 223 218 135
Andorra 452 452 452 452
Angola 1254203 1156652 826993 45316
Anguilla 82 82 82 82
Antigua and Barbuda 430 429 429 283
Argentina 2747226 2304871 1397748 72583
Armenia 28400 18388 18014 7986
Aruba 183 135 135 120
Australia 7662968 544779 161943 23595
Austria 83223 83223 82240 34309
Azerbaijan 85094 85094 85094 61137
Bahamas 12542 12542 4684 261
Bahrain 667 667 667 667
Bangladesh 136462 136462 136462 134484
Barbados 437 437 437 437
Belarus 204635 204635 204635 18311
Belgium 30560 30560 30560 26397
Belize 21827 21827 21827 0
Benin 115807 115807 115807 60912
Bermuda 63 63 63 63
Bhutan 39186 36720 29933 3286
Bolivia (Plurinational State of) 1061973 947005 433018 25398
Bonaire, Saint Eustatius and Saba 294 294 294 294
Bosnia and Herzegovina 50838 50838 50602 23107
Botswana 574143 486394 172257 3381
Bouvet Island 77 0 0 0
Brazil 8432161 4741899 2290227 121789
British Indian Ocean Territory 64 0 0 0
British Virgin Islands 164 164 135 89
Brunei Darussalam 5789 3986 2925 1219
Bulgaria 111090 111090 110850 28618
Burkina Faso 275928 275928 275928 145614
Burundi 25128 25128 25128 25128
Cambodia 178140 175077 161853 73775
Cameroon 466459 466459 466459 92290
Canada 9212798 710850 329660 35654
Cape Verde 4114 4070 4070 1891
Cayman Islands 276 276 276 58
Central African Republic 623275 495599 294403 7701
Chad 1274574 1060405 698674 67956
Chile 727775 529386 348504 41203
China 9247148 6921096 5851780 3303063
China, Hong Kong Special Administrative Region 1113 1113 1113 1113
China, Macao Special Administrative Region 25 25 25 25
Colombia 1132589 1031894 672204 150279
Comoros 1683 1683 1683 1683
Congo 340938 340938 248205 415
Cook Islands 261 251 251 95
Costa Rica 51343 51318 51318 16009
Cote d'Ivoire 321202 312064 312064 143917
Croatia 56550 56550 56059 16929
Cuba 109801 109801 106077 61271
Curacao 436 422 366 232
Cyprus 9274 8939 8377 5362
Czech Republic 78145 77728 76346 38868
Democratic People's Republic of Korea 121803 121803 121803 96092
Democratic Republic of the Congo 2303597 2204141 2204141 314287
Denmark 42644 42625 42518 16908
Djibouti 21655 21655 21655 2306
Dominica 758 758 758 291
Dominican Republic 47929 47929 47929 26597
Ecuador 255640 222788 185522 54254
Egypt 994457 189800 128395 59813
El Salvador 20259 20259 20259 19194
Equatorial Guinea 27091 27091 27091 616
Eritrea 120465 120465 120465 10803
Estonia 43138 36587 20835 1902
Ethiopia 1131068 1131068 1123176 499744
Faeroe Islands 1391 1359 1043 213
Falkland Islands (Malvinas) 12254 65 65 39
Fiji 19046 19046 18787 2230
Finland 305154 267942 182408 16522
France 546119 545917 535035 209286
French Guiana 83407 50202 14632 207
French Polynesia 4135 4135 3914 1207
French Southern Territories 6939 0 0 0
Gabon 263732 263732 85402 5350
Gambia 10567 10559 10559 9404
Georgia 69277 67276 65803 14834
Germany 353564 349758 349758 264365
Ghana 233507 233507 233507 140120
Gibraltar 7 7 7 7
Greece 131714 130338 122139 25442
Greenland 316390 413 232 169
Grenada 361 361 361 361
Guadeloupe 1659 1659 1659 1600
Guam 552 444 432 261
Guatemala 108496 108496 108496 70215
Guernsey 88 86 86 84
Guinea 245768 245768 245768 60560
Guinea-Bissau 33568 33568 33568 9477
Guyana 210213 51724 11798 2014
Haiti 27047 27047 27047 24692
Heard Island and McDonald Islands 108 0 0 0
Holy See 0 0 0 0
Honduras 112068 107212 97585 37002
Hungary 91675 91675 91538 43088
Iceland 88938 41720 5233 1263
India 3129067 3122099 3080558 2780553
Indonesia 1889536 1889536 1816442 771227
Iran (Islamic Republic of) 1617546 1617546 1491731 369970
Iraq 441034 285456 285456 159910
Ireland 69000 68837 66291 9261
Isle of Man 578 578 578 261
Israel 21987 19061 18484 11113
Italy 298133 193655 154876 35487
Jamaica 11036 11036 11036 11036
Japan 370379 370371 368386 236177
Jersey 125 125 125 125
Jordan 88939 60921 38978 13588
Kazakhstan 2644303 2432662 844971 76109
Kenya 583503 539774 448287 143914
Kiribati 930 68 68 68
Kosovo 11140 11140 11140 9734
Kuwait 17446 17446 17446 5023
Kyrgyzstan 189427 189427 189427 25124
Lao People's Democratic Republic 229377 226130 194051 28145
Latvia 63487 63487 63487 2242
Lebanon 10440 9463 9277 7110
Lesotho 30520 30520 30520 11215
Liberia 96294 96294 96013 18183
Libya 1622156 917323 229238 32651
Liechtenstein 161 161 161 161
Lithuania 63830 63830 63830 5489
Luxembourg 2559 2559 2559 2177
Madagascar 590336 590336 583032 122019
Malawi 94747 81883 79460 65038
Malaysia 329838 327538 275418 85846
Maldives 301 196 194 187
Mali 1253879 714553 534839 72997
Malta 326 326 326 326
Marshall Islands 303 270 260 180
Martinique 1123 1123 1123 1053
Mauritania 1046076 329861 186024 11150
Mauritius 2028 2006 1999 1809
Mayotte 393 393 393 393
Mexico 1950037 1286567 972990 182816
Micronesia (Federated States of) 778 762 761 428
Monaco 2 2 2 2
Mongolia 1550569 577627 43439 6708
Montenegro 13474 13474 12035 3197
Montserrat 101 26 26 18
Morocco 414274 384579 313524 99055
Mozambique 778180 770118 679223 174677
Myanmar 667138 657212 645275 293700
Namibia 827608 223517 49663 7205
Nauru 22 22 22 22
Nepal 143459 136779 120652 77346
Netherlands 34587 34587 34587 34503
New Caledonia 18871 18869 13072 309
New Zealand 273711 123462 54450 4649
Nicaragua 119364 119364 117636 27633
Niger 1189891 766295 381213 148263
Nigeria 907439 907439 907439 775094
Niue 268 268 144 0
Norfolk Island 40 38 38 38
Northern Mariana Islands 506 188 182 100
Norway 308496 291724 173652 15687
Occupied Palestinian Territory 6043 6043 6043 6043
Oman 310774 276382 162251 22510
Pakistan 861726 861726 822778 418093
Palau 488 488 385 218
Panama 74759 74242 63891 11744
Papua New Guinea 462697 462697 353040 32723
Paraguay 398091 235883 164616 14786
Peru 1284970 1135031 670865 76305
Philippines 294548 294431 290715 194519
Pitcairn 54 54 54 0
Poland 308073 308073 308073 165995
Portugal 91934 47235 25528 12216
Puerto Rico 8913 7393 7248 5318
Qatar 11275 9555 8012 2940
Republic of Korea 99405 99405 99405 64928
Republic of Moldova 33453 33453 33453 32206
Reunion 2525 2525 2525 2177
Romania 235127 235127 230005 34229
Russian Federation 16278876 7968894 4481281 251483
Rwanda 23935 21534 21534 21534
Saint Helena 413 322 223 5
Saint Kitts and Nevis 267 267 267 267
Saint Lucia 618 567 567 567
Saint Pierre and Miquelon 224 224 224 27
Saint Vincent and the Grenadines 400 400 400 400
Saint-Barthelemy 24 24 24 24
Saint-Martin (French part) 50 50 50 50
Samoa 2868 2868 2868 1019
San Marino 61 61 61 61
Sao Tome and Principe 1008 1008 1008 729
Saudi Arabia 1916976 1902485 1446169 89285
Senegal 196143 196143 196143 71294
Serbia 76969 75590 71306 20842
Seychelles 496 496 496 225
Sierra Leone 72663 72663 72663 39086
Singapore 666 388 388 388
Sint Maarten (Dutch part) 34 34 34 34
Slovakia 48826 48286 48024 26250
Slovenia 20245 19603 18647 7403
Solomon Islands 28524 28301 24021 2178
Somalia 636702 636702 625599 35632
South Africa 1220208 619640 277065 57925
South Georgia and the South Sandwich Islands 1605 0 0 0
South Sudan 624914 624914 553458 45449
Spain 504716 503497 448505 113906
Spratly Islands 1 0 0 0
Sri Lanka 65033 64390 62630 41895
Sudan 1863760 1734043 1408717 199263
Suriname 145345 28203 12327 1049
Svalbard and Jan Mayen Islands 25632 0 0 0
Swaziland 17309 17309 17309 9306
Sweden 415314 345762 210094 25988
Switzerland 38914 38911 37222 20578
Syrian Arab Republic 185613 172601 158951 69334
Taiwan 36400 36399 35439 18233
Tajikistan 138179 102075 102075 46970
Thailand 511713 511406 511406 354150
The former Yugoslav Republic of Macedonia 24453 24453 24453 10853
Timor-Leste 15006 15006 14959 5877
Togo 57168 57168 57168 46213
Tokelau 15 15 15 15
Tonga 741 741 741 586
Trinidad and Tobago 5183 5183 5183 4326
Tunisia 154101 127242 113899 46137
Turkey 770596 770596 759889 280477
Turkmenistan 465731 465731 465731 142
Turks and Caicos Islands 940 407 407 119
Tuvalu 41 12 12 6
Uganda 206092 206092 204762 156719
Ukraine 586209 586138 586138 113637
United Arab Emirates 79565 79565 79565 11945
United Kingdom of Great Britain and Northern Ireland 241696 228492 197551 60201
United Republic of Tanzania 886204 867286 756302 284147
United States Minor Outlying Islands 41 0 0 0
United States Virgin Islands 362 362 362 321
United States of America 9090181 3540041 2460345 488234
Uruguay 174772 54246 12755 1634
Uzbekistan 428650 428650 428650 129727
Vanuatu 12400 12139 9811 898
Venezuela (Bolivarian Republic of) 905593 742675 515715 125415
Viet Nam 326515 326515 326515 262742
Wallis and Futuna Islands 156 156 156 105
Western Sahara 268479 14566 974 974
Yemen 454789 342455 290358 98639
Zambia 742776 742776 722223 67254
Zimbabwe 388537 388537 388537 70531


    Countries larger than Canada using average threshold:

True Area Alaska Threshold Farming Threshold Average Threshold
COUNTRYNM
China 9247148 6921096 5851780 3303063
India 3129067 3122099 3080558 2780553
Nigeria 907439 907439 907439 775094
Indonesia 1889536 1889536 1816442 771227
Ethiopia 1131068 1131068 1123176 499744
United States of America 9090181 3540041 2460345 488234
Pakistan 861726 861726 822778 418093
Iran (Islamic Republic of) 1617546 1617546 1491731 369970
Thailand 511713 511406 511406 354150
Democratic Republic of the Congo 2303597 2204141 2204141 314287
Myanmar 667138 657212 645275 293700
United Republic of Tanzania 886204 867286 756302 284147
Turkey 770596 770596 759889 280477
Germany 353564 349758 349758 264365
Viet Nam 326515 326515 326515 262742
Russian Federation 16278876 7968894 4481281 251483
Japan 370379 370371 368386 236177
France 546119 545917 535035 209286
Sudan 1863760 1734043 1408717 199263
Philippines 294548 294431 290715 194519
Mexico 1950037 1286567 972990 182816
Mozambique 778180 770118 679223 174677
Poland 308073 308073 308073 165995
Iraq 441034 285456 285456 159910
Uganda 206092 206092 204762 156719
Afghanistan 640733 640660 574946 153707
Colombia 1132589 1031894 672204 150279
Niger 1189891 766295 381213 148263
Burkina Faso 275928 275928 275928 145614
Cote d'Ivoire 321202 312064 312064 143917
Kenya 583503 539774 448287 143914
Ghana 233507 233507 233507 140120
Bangladesh 136462 136462 136462 134484
Uzbekistan 428650 428650 428650 129727
Algeria 2315206 1056997 482377 127084
Venezuela (Bolivarian Republic of) 905593 742675 515715 125415
Madagascar 590336 590336 583032 122019
Brazil 8432161 4741899 2290227 121789
Spain 504716 503497 448505 113906
Ukraine 586209 586138 586138 113637
Morocco 414274 384579 313524 99055
Yemen 454789 342455 290358 98639
Democratic People's Republic of Korea 121803 121803 121803 96092
Cameroon 466459 466459 466459 92290
Saudi Arabia 1916976 1902485 1446169 89285
Malaysia 329838 327538 275418 85846
Nepal 143459 136779 120652 77346
Peru 1284970 1135031 670865 76305
Kazakhstan 2644303 2432662 844971 76109
Cambodia 178140 175077 161853 73775
Mali 1253879 714553 534839 72997
Argentina 2747226 2304871 1397748 72583
Senegal 196143 196143 196143 71294
Zimbabwe 388537 388537 388537 70531
Guatemala 108496 108496 108496 70215
Syrian Arab Republic 185613 172601 158951 69334
Chad 1274574 1060405 698674 67956
Zambia 742776 742776 722223 67254
Malawi 94747 81883 79460 65038
Republic of Korea 99405 99405 99405 64928
Cuba 109801 109801 106077 61271
Azerbaijan 85094 85094 85094 61137
Benin 115807 115807 115807 60912
Guinea 245768 245768 245768 60560
United Kingdom of Great Britain and Northern Ireland 241696 228492 197551 60201
Egypt 994457 189800 128395 59813
South Africa 1220208 619640 277065 57925
Ecuador 255640 222788 185522 54254
Tajikistan 138179 102075 102075 46970
Togo 57168 57168 57168 46213
Tunisia 154101 127242 113899 46137
South Sudan 624914 624914 553458 45449
Angola 1254203 1156652 826993 45316
Hungary 91675 91675 91538 43088
Sri Lanka 65033 64390 62630 41895
Chile 727775 529386 348504 41203
Sierra Leone 72663 72663 72663 39086
Czech Republic 78145 77728 76346 38868
Honduras 112068 107212 97585 37002
Canada 9212798 710850 329660 35654